%%%%%%%%%%%%%Q3:多项式系数估计%%%%%%%%%%%%%%%% %%%%%%%%%%2016/07/21%%%%%%%%%%%%%%%%%%% clc;clear; N=10;%样本个数输入 Order=1;%函数阶次输入 M=5;%绘制每M分之1个过程的观测结果曲线 X=linspace(1,N,N);%时间向量 for i=1:(Order+1) %构造以N/2为对称轴的Order阶函数,计算各阶次系数 X_0(i)=nchoosek(Order,i-1)*(-N/2)^(i-1); end C=cell(N,1); X_noise=(N/10)^Order*randn(1,N);%白噪声 %%%%%%%%%%%构造离散点%%%%%%%%%%%%%%%%%%%% for i=1:N temp=0; for j=1:(Order+1) temp(j)=X(i)^(Order-j+1); end C{i}=temp; Y(i)=C{i}*X_0'+X_noise(i); end %%%%%%%%%%%状态估计初始值%%%%%%%%%%%%%%%% X_estimate=cell(N,1); X_estimate1=0; for i=1:(Order+1
卡尔曼滤波实现多项式拟合Matlab
最新推荐文章于 2024-12-11 14:51:43 发布
