python编程实现图片内多个物体尺寸测量

该博客介绍了如何利用OpenCV进行图像处理,包括读取图片、预处理、轮廓检测以及边界框绘制,从而实现对图片中多个物体的尺寸测量。通过查找轮廓并计算边界框,可以确定物体的大小,并在图像上直观展示测量结果。
摘要由CSDN通过智能技术生成

要实现图片内多个物体尺寸测量,你可以使用计算机视觉库,如 OpenCV 来实现。

首先,你需要读取图片,然后对图像进行预处理,以便更容易地检测到图像中的物体。例如,你可以使用边缘检测算法来提取边缘,或者使用图像分割算法来分割图像中的物体。

然后,你可以使用模板匹配或者特征点匹配来查找图像中的特征点,并使用这些特征点来计算图像中的物体的尺寸。

最后,你可以使用 OpenCV 的绘图功能来在图像上绘制测量结果,并将结果保存到新的图像文件中。

效果图:

代码:

import cv2

# 读取图片
image = cv2.imread('image.jpg')

# 对图像进行预处理
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresholded = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]

# 查找图像中的轮廓
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 对每个轮廓进行处理
for c in contours:
    # 计算轮廓的边界框
   

 该程序首先读取图片,然后对图像进行预处理,以便更容易地检测到图像中的物体。然后,它使用 OpenCV 的轮廓检测功能来查找图像中的轮廓,并遍历每个轮廓。对于每个轮廓,程序计算轮廓的边界框,然后在图像上绘制边界框。接着,它计算物体的尺寸,并使用 OpenCV 的文本添加功能在图像上添加文本,显示物体的尺寸。最后,程序使用 OpenCV 的图像显示功能显示处理后的图像,并使用 OpenCV 的图像保存功能将处理后的图像保存到新的文件中。

请注意,这只是一个简单的示例代码,你可能需要根据你的需求和图像特点来调整代码。

完整代码:

import cv2

# 读取图片
image = cv2.imread('1.jpg')

# 对图像进行预处理
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresholded = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]

# 查找图像中的轮廓
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 对每个轮廓进行处理
for c in contours:
    # 计算轮廓的边界框
    x, y, w, h = cv2.boundingRect(c)

    # 在图像上绘制边界框
    cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)

    # 计算物体的尺寸
    size = w * h

    # 在图像上添加文本,显示物体的尺寸
    cv2.putText(image, f'Size: {size}', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

# 显示处理后的图像
cv2.imshow('Image', image)
cv2.waitKey(0)

# 保存处理后的图像
cv2.imwrite('image_processed.jpg', image)

使用OpenCV进行工件尺寸的视觉测量是一种常见的计算机视觉任务,尤其在自动化生产和质量控制领域。下面是关于如何利用OpenCV来进行此类工作的基本流程: ### 准备阶段 1. **图像采集**:首先需要获取待测工件的高清图像。这通常通过摄像头完成。 2. **环境设置**:确保摄像头稳定放置于目标工件附近,并调整照明条件以减少阴影和反射,提高图像清晰度。 ### 图像预处理 图像预处理是关键步骤,旨在去除图像的噪声、调整对比度等,以便后续操作更准确地识别和测量工件特征。 1. **灰度化**:将彩色图像转换为灰度图,简化图像处理过程。 2. **阈值分割**:应用阈值技术将图像转换为二值图像,便于形状检测和边界提取。 3. **边缘检测**:使用如Sobel算子、Canny算法等对图像进行边缘检测,定位工件的关键点或边框。 4. **形态学变换**:通过膨胀、腐蚀等操作增强轮廓细节或去除小噪声。 5. **滤波和去噪**:进一步优化图像质量,比如使用高斯滤波器减少随机噪声。 ### 特征提取 根据工件的具体形状和尺寸特点选择合适的特征提取方法。 1. **轮廓分析**:从二值图像提取物体轮廓,并计算其几何属性,如长度、宽度、周长等。 2. **区域统计**:分析轮廓内部像素分布情况,包括面积、心位置、矩形度等指标。 3. **角点检测**:对于有明确角点的工件,可以利用Harris角点检测或FAST算法定位关键特征。 ### 尺寸测量 基于提取到的特征数据,计算出工件的实际尺寸。 1. **比例校正**:如果已知相机焦距和图像工件的部分实际尺寸,可以计算图像尺寸与真实尺寸的比例,从而精确测量尺寸。 2. **三维重建**:在某些场景下,结合深度信息或其他传感器数据,可以实现工件的三维尺寸测量。 ### 结果验证及输出 最后,将测量结果进行展示或记录。这可能是直接在图像上标注尺寸,或者导出至其他系统或文件供后续分析和决策参考。 ### 技术选型建议 - **OpenCV版本**:选择最新稳定版,保证功能丰富且性能优化。 - **依赖库**:考虑与其他库如numpy、matplotlib配合使用,增强数据分析和可视化能力。 - **硬件配置**:根据图像分辨率和处理速度需求,选择合适的CPU/GPU资源。 ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

babyai997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值