探究因果关系的方法

一、格兰杰因果关系 ( granger)

原因总是在结果之前,
结果总是在原因之后。

1.基于时间顺序先后,并不考虑变量间的同期因果关系。
2.对滞后项敏感,选择不同的滞后项得出来的结果可能完全不同。
3.只考虑经济变量的因果关系在统计上显著性, 而忽略了其在经济意义上的显著性

格兰杰因果真实含义是时间上的`先于’ 关系, 而并不是通常意义的因果关系

做法:

用eviews里的格兰杰因果检验做。
做之前先做单位根检验。

二、有向无环图(DAG)

通过分析扰动项之间的(条件)相关系数,以正确识别扰动项之间的同期因果关系, 进而为正确设定VAR 扰动项的结构关系提供客观的依据

算法步骤:

  1. 这一算法从“无向完全图”(complete undirected graph)出发, 首先分析变量间的(无条件)相关系数,
  2. 当相关系数为0 , 则将表示因果关系的连线移去;
  3. 在对所有的(无条件)相关系数分析完成后, 便接着分析1 阶偏相关系数,
  4. 同样地, 当变量间的偏相关系数为0 , 则移去两者间的连线;
  5. 类似地, 在分析完1 阶偏相关系数, 则继续分析2 阶偏相关系数、3 阶偏相关系数、… …,
  6. 对于N 个变量, 这一算法将持续分析到N -2 阶的偏相关系数。

分析偏相关系数是否为0时,用到了fishers-z 检验。

在这里插入图片描述
上图是截取自“财政政策与货币政策对私人投资的影响研究———基于有向无环图的应用分析(杨子晖2008) 《经济研究》”

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页