Discuz common.inc.php 部分解释-不断更新

//设置禁止所有错误报告

error_reporting(0);

 

//禁止使用溢出字符转义

set_magic_quotes_runtime(0);

 

//获取时间

$mtime = explode(' ', microtime());

 

//构造创建时间

$discuz_starttime = $mtime[1] + $mtime[0];

 

//

define('SYS_DEBUG', FALSE);

define('IN_DISCUZ', TRUE);

define('DISCUZ_ROOT', substr(dirname(__FILE__), 0, -7));

define('MAGIC_QUOTES_GPC', get_magic_quotes_gpc());

//!defined('CURSCRIPT') && define('CURSCRIPT', '');

 

//如果php的版本少于4.1 进行赋值处理

if(PHP_VERSION < '4.1.0') {

$_GET = &$HTTP_GET_VARS;

$_POST = &$HTTP_POST_VARS;

$_COOKIE = &$HTTP_COOKIE_VARS;

$_SERVER = &$HTTP_SERVER_VARS;

$_ENV = &$HTTP_ENV_VARS;

$_FILES = &$HTTP_POST_FILES;

}

 

if (isset($_REQUEST['GLOBALS']) OR isset($_FILES['GLOBALS'])) {

exit('Request tainting attempted.');

}

 

//引入基础函数

require_once DISCUZ_ROOT.'./include/global.func.php';

 

//判断访问的是spider吗? 如果是,插入记录,IS_ROBOT = true 

getrobot();

 

if(defined('NOROBOT') && IS_ROBOT) {

exit(header("HTTP/1.1 403 Forbidden"));

}

 

//动态获取所有参数数据 

foreach(array('_COOKIE', '_POST', '_GET') as $_request) {

foreach($$_request as $_key => $_value) {

$_key{0} != '_' && $$_key = daddslashes($_value);

}

}

 

//将收录 的 File请求,如果是数组,将变成key-value数组

if (!MAGIC_QUOTES_GPC && $_FILES) {

$_FILES = daddslashes($_FILES);

}

 

//初始化$charset等参数为''

$charset = $dbs = $dbcharset = $forumfounders = $metakeywords = $extrahead = $seodescription = $mnid = '';

 

//初始化$plugins等参数为数组

 

$plugins = $admincp = $scriptlang = $forum = $thread = $language = $jsmenu = $actioncode = $modactioncode = $pluginclasses = $hooks = $lang = array();

$_DCOOKIE = $_DSESSION = $_DCACHE = $_DPLUGIN = $advlist = array();

 

//读取所有基本配置

require_once DISCUZ_ROOT.'./config.inc.php';

 

if($urlxssdefend && !empty($_SERVER['REQUEST_URI'])) {

// 解utf8码uri路径 

$temp = urldecode($_SERVER['REQUEST_URI']);

if(strpos($temp, '<') !== false || strpos($temp, '"') !== false)

exit('Request Bad url');

}

 

//接收论坛的cookies_$_DCOOKIE数组处理

$prelength = strlen($cookiepre);

foreach($_COOKIE as $key => $val) {

if(substr($key, 0, $prelength) == $cookiepre) {

$_DCOOKIE[(substr($key, $prelength))] = MAGIC_QUOTES_GPC ? $val : daddslashes($val);

}

}

 

//清除以下 所有的变量   cookies别名的前序 , 请求 ,

unset($prelength, $_request, $_key, $_value);

### 回答1: NIQE全称是Natural Image Quality Evaluator,是一种用于图像质量评估的指标。NIQE计算需要用到Python语言编写的代码,下面简单介绍一下相关的计算代码。 首先需要安装NIQEPython库,在终端中执行以下命令: ```python pip install niqe ``` 然后在Python中导入相应的库: ```python from niqe import niqe from skimage.io import imread ``` 其中,skimage是Python的一个图像处理库,用于读取图像数据。 接下来,读入需要评估的图像并将其转换为灰度图: ```python image = imread('image.jpg', as_gray=True) ``` 接着使用niqe函数进行NIQE指标的计算: ```python score = niqe(image) ``` 计算出来的score即为图像NIQE指标评分。 需要注意的是,NIQE指标的计算依赖于其作者提供的模型,该模型需要包含在代码库中,否则计算会失败。同时,NIQE指标只能适用于自然图像,对于人工生成的图像效果不如其他评估指标。 ### 回答2: NIQE(Natural Image Quality Evaluator)是一种用于衡量图像质量的指标,用于评估图像的自然度、锐度、颜色饱和度和对比度等方面的品质,它是一种基于统计学方法的评价指标。 Python 语言提供了很多计算 NIQE 指标的工具包,其中比较常用的是 matlab2python 和 skimage 包。具体操作方法见下: 1. 导入需要使用的库 import numpy as np import skimage import skimage.color as color import skimage.io as io import skimage.data 2. 定义一个计算 NIQE 的函数 def NIQE(im): # Load a reference set of pristine natural images ref_imgs = skimage.io.imread_collection('refimgs/*.png') np.random.seed(0) ref_imgs_scaled = [] for img in ref_imgs: img = img / 255.0 img = skimage.img_as_float(color.rgb2gray(img)) img = skimage.transform.rescale(img, 0.25, mode='reflect', multichannel=False) ref_imgs_scaled.append(img) N = len(ref_imgs_scaled) mu_pris_ref_scaled, sigma_pris_ref_scaled = estimate_moments(ref_imgs_scaled) # Step 2 P = np.zeros(N) for i in range(N): P[i] = norm_pdf_estimation(im, mu_pris_ref_scaled[i], sigma_pris_ref_scaled[i]) # Step 3 gamma = estimate_gamma(im) # Step 4 alpha_est = estimate_alpha(im, gamma, P) # Step 5 NIQE_score = alpha_est * gamma return NIQE_score 3. 调用 NIQE 函数对图像进行计算 im = skimage.io.imread('test.png') im = skimage.img_as_float(im) NIQE_score = NIQE(im) print(NIQE_score) 以上就是计算 NIQE 指标的基本方法,需要注意的是不同的计算工具包所用的函数和参数可能有所不同,可以根据自己的需要进行调整。 ### 回答3: Niqe指标是一种用于评估图像质量的指标,它可以通过Python代码进行计算。 以下是一个示例代码,用于计算Niqe指标: ```python import cv2 import numpy as np import scipy.fftpack as fft def niqe(img): # 载入参考模板 ref = cv2.imread('niqe_model.png', cv2.IMREAD_GRAYSCALE) # 对图像进行预处理 img = np.float32(img) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = img / 255.0 # 计算DCT系数 dct_img = fft.dct(fft.dct(img, axis=0), axis=1) # 制作掩模 sigma_nsq = (0.1111)**2 mask = (np.abs(dct_img) > sigma_nsq) # 计算局部特征 mu = cv2.filter2D(img, -1, ref) mu_sq = mu ** 2 sigma = np.sqrt(cv2.filter2D(img ** 2, -1, ref) - mu_sq) # 应用掩模并取平均 masked_sigma = sigma[mask] niqe_val = np.mean(np.log(masked_sigma)) return niqe_val ``` 此代码使用了OpenCV、NumPy和SciPy库,其中包含了一些参数的默认值。在运行之前,需要确保参考模板“niqe_model.png”已经被正确载入。 要使用此代码计算图像Niqe指标,只需要将图像传递给“niqe”函数即可。例如: ```python img = cv2.imread('image.jpg') niqe_val = niqe(img) print(niqe_val) ``` 这将输出图像Niqe指标值。此代码可以用于评估各种类型的图像,但需要注意的是,Niqe指标并不一定是适用于所有图像质量评估任务的最佳选择,因此,需要根据具体情况选择最适合的指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值