机器学习经典模型

朴素贝叶斯(分类)

\[ P(C|F)=\frac{P(F|C)P(C)}{\sum_iF_i}=\frac{\prod_iP(F_i|C)P(C)}{\sum_iF_i} \]

  • \(C\): Class, 类别
  • \(F\): Feature,特征
  • \(P(C)\): 先验概率
  • \(P(F|C)\):似然值
  • \(\sum_iF_i\):归一化用的,对所有类别都相同,可忽略
  • 假设“所有特征彼此独立”,问题转化为:
    \begin{aligned}
    P(C|F)\propto\prod_iP(F_i|C)P(C)
    \end{aligned}
    其中\(P(F_i|C)\)\(P(C)\)可从统计资料中得到,由此可计算出每个类别对应的概率,从而找出最大概率的类。
  • “所有特征彼此独立”是很强的假设,现实中不太可能成立,但是可以大大简化计算,且有研究表明对分类结果准确性影响不大。

参考:阮一峰的网络日志

决策树(分类)

算法核心

选择最优的划分特征。每次划分后的分支节点所包含的样本尽可能的属于同一类别,也就是节点中所包含的样本纯度越来越高。

如何评判纯度?

信息熵

信息量化

如何衡量\(H(x)\)的大小

  1. 事件的信息量和事件发生的概率有关。\(H(x)\Leftrightarrow \frac{1}{P(x)}\)
  2. 多个事件的信息总量是信息量的加和。\(H(x_1,x_2)\Leftrightarrow H(x_1)+H(x_2)\)
  3. \(H(x)\ge0\)

需要构造一个关于\(H(x)\)的函数满足上述关系:\(H(x)=log \frac{1}{P(x)}=-logP(x)\)

熵求的是\(H(x)\)\(P(x)\)分布下的数学期望,代表一个系统的不确定性,信息熵越大,不确定性越大。
\begin{aligned}
Entropy(x) = E_x[H(x)]=-\sum_xP(x)logP(x)
\end{aligned}

  • 全为一种元素,熵最小,\(Entropy(x)=0\)
  • 系统内元素均匀分布,熵最大,\(Entropy(x)=1\)
  • 想在系统内对元素划分,使得同一类元素在一起,每次划分就希望 minimize 系统的信息熵

信息增益

Information Gain(IG)

\begin{aligned}
IG=OriginalEntropy - \sum_i \frac{A_i}{|A|}Entropy(A_i)
\end{aligned}
信息熵是系统的不确定度,信息增益代表划分后系统的不确定度减少的程度。

每次划分希望信息增益越大越好。

ID3算法

采用 Information Gain 作为纯度的度量,算每一个特征的信息增益,选择使得信息增益最大的特征进行划分。

决策树划分

特征类型:

  1. ordinal 离散而有序
  2. numerical (discrete nominal) 离散而无序
  3. continuous 连续

贝叶斯分类模型适用离散无序类型(discrete)的特征

划分方法:

  1. 多路划分
    • 独立值
  2. 二分法
    • 组合

Discretization 连续数据离散化:

  1. 有序离散化
    • 静态划分 一开始就离散化
    • 动态划分 均匀间隔、均匀频次、聚类
  2. 二分法
    • 类似IG3算法划分,找IG最大的划分
    • 计算更密集

Gini Index

除了熵,还有其他方式来指导决策树划分。
\begin{aligned}
GINI(t)=1-\sum_jP(j|t)^2
\end{aligned}
\(P(j|t)\):每个状态\(t\)里每个class\(j\)的频率

  • 若均匀分布(对应熵 = 1的情况),GINI Index = 0.5 最大
  • 若某一类元素占比为1 (对应熵 = 0的情况),GINI Index = 0 最小

比较容易算,不用计算log。

Gini Split

划分\(k\)个分区,计算各个分区的加权 GINI 指数

对应信息增益

\begin{aligned}
GINI_{split}=\sum_{i=1}^k\frac{n_i}{n}GINI(i)
\end{aligned}

  • \(n_i\):当前分区内元素个数
  • \(n\): 系统内总的元素个数

GINI划分越小越好

Misclassification Error

错分率

\begin{aligned}
Error(t)=1-max_iP(i|t)
\end{aligned}

  • \(P(i|t)\):每个状态\(t\)里每个class\(i\)的频率
  • 若某一类元素占比为1 (对应熵 = 0,GINI Index = 0的情况),Error = 0 最小
  • 若均匀分布(对应熵 = 1,GINI Index = 0.5的情况),Error = 0.5 最大

QQ截图20190920164010.png

Traning and Test Errors

训练决策树时什么时候该停止,停止过早,没有很好学习数据性能,停止过晚,过拟合现象。

Tree Ensemble 集成学习

numbers of nodes: complexity of model

CART回归树(预测)

预测回归连续型数据。

给定训练数据 \(D={(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(N)},y^{(N)})}\),希望学习一个CART树来最小化损失函数

\begin{aligned}
Loss = min_{j,s}[min_{C_1}L(y^i,C_1)+min_{C_2}L(y^i,C_2)] \newline
where \quad C_m=ave(y_i|x_i \in R_m)
\end{aligned}

  • \(R_m\):被划分的输入区间
  • \(C_m\):区间\(R_m\)对应的输出值
  • \(L\): \(y\)\(C\)之间的距离
  • \(y\):第几个特征变量
  • \(s\): 分割点
  • 遍历特征变量\(j\),在每一个特征变量上选择合适分割点,使得距离相加和最小,最后选择最好的结果对应的\(j\)\(s\)
  • cost functin : 每一个区间的均值和\(y\)之间的距离
  • 计算距离一般常用\(L_2\)欧式距离
  • CART树一般就分2块区域,\(R_1\)\(R_2\),因为是递归分割的

集成学习

Bagging (Bootstrap Aggregating,引导聚集算法,装袋算法)

  • 给定大小为\(n\)的训练集\(D\),从中均匀、有放回地选出\(m\)个大小为\(n'\)的子集\(D_i\)作为新的训练集。在这\(m\)个训练集上使用分类、回归等算法,则得到\(m\)个模型,再通过取平均值、取多数票等方法,即可得到 Bagging 结果。
  • 采好后每一个定形处理
  • 很好做并行

  • Bagging 算法可与其他分类、回归算法结合,提高准确率、稳定性的同时,通过降低结果的方差,避免过拟合的发生。

  • Bootstrap 是统计学里一种采样方法。自身有放回式采样。

Random Forest

对CART树使用 Bagging 算法,生成的许多树组成随机森林。

Boosting(增强算法)

AdaBoost

给出训练数据\(D={(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(N)},y^{(N)})}\)\(x^{(i)}\in R^n\)\(y \in \left\{ +1,-1 \right\}\)。对每一个\(x^{(i)}\),有一个相应的权重\(w^{(i)} \in R\)(标量)

  1. 初始化

\begin{aligned}
w=(w^{(1)},w^{(2)},...,w^{(N)})\newline w^{(i)}=\frac{1}{N},\quad i=1,2,...,N
\end{aligned}

  1. for \(k=1,2,...,K\)迭代

\(G_k(x)\)是一个弱分类器(朴素贝叶斯、决策树)

  1. 计算每个弱分类器的错分率

\begin{aligned}
e_k=P(G_k(x^{(i)})不等于 y^{(i)})\newline =\sum_iw^{(i)}I (G_k(x^{(i)}不等于 y^{(i)} )
\end{aligned}

  • \(I(condition)\):Indicator 指示函数,逻辑变量,括号内等式成立等于1,不成立等于0。这里表示被分类错误的样本数量。
  • \(w^{(i)}\):初始化状态是\(\frac{1}{N}\)
  1. 计算每个弱分类器的权重
    \begin{aligned}
    \alpha_k = \frac{1}{2}ln(\frac{1-e_k}{e_k})
    \end{aligned}
  • 如果一个分类器的误差比较大,不希望该分类器的权重较大
  1. 更新训练数据权重\(w^{(k)}\)
    \begin{aligned}
    w_{k+1}^{(i)}=\frac{w_k^{(i)}}{z_k}exp(-\alpha_ky^{(i)}G_k(x^{(i)})
    \end{aligned}
  • \({z_k}\):归一化处理,使得\(w_k^{(i)}\)加和为1。
    \begin{aligned}
    {z_k}=\sum_{i=1}^N w_k^{(i)}exp(-\alpha_kG_k(x^{(i)})
    \end{aligned}
  1. 得到结果
    \begin{aligned}
    f(x)^{(i)}=\sum_{k=1}^k\alpha_kG_k(x^{(i)})
    \newline
    F(x^{(i)})=sign(f(x)^{(i)}) \quad最终分类结果
    \end{aligned}
  • sign()函数,大于0输出1,小于0输出-1

Boosting需要逐个训练弱分类器,1)数据权重初始化 。2)根据每一个弱分类器的误差来算数据的新权重,分错了权重增加,分对了权重减少。3)将要分类的数据输入到每一个弱分类器,由每一个若分类器的加权结果得出最终结果。

Gradient Boosting(梯度提升)

boosting的思想:分类器对分对了的保留,分错了的在下一个分类器加强学习。每次都在调整残差。

Gradient Boosting: 每一次建立模型是在之前建立模型损失函数的梯度下降方向.

有损失函数就会有梯度

在函数空间求梯度

  1. 给定训练数据 \(D={(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(N)},y^{(N)})}\),我们要让残差适应之前的弱分类器

\begin{aligned}
F_{m+1}(x) = F_{m}(x)+h(x)
\end{aligned}
我们的目标是学习一个\(h(x^{(i)})\)

\begin{aligned}
F_{m+1}(x^{(i)})=F_{m}(x^{(i)})+h(x^{(i)})=y^{(i)}
\end{aligned}

  1. 监督学习,目的是找到一个对于$ F(x)\(的逼近函数\)\widehat F(x)$, 通过最小化损失函数的数学期望

\begin{aligned}
\widehat F(x)=argminE_{x,y}[L(y,F(x))]
\newline
F(x)=\sum_{i=1}^M \alpha_ih_i(x)
\newline
F_0(x)=argmin_C\sum_{i=1}^NL(y^{(i)},C)
\newline
F_m(x)=F_{m-1}(x)+argmin\sum_{i=1}^N[L(y^{(i)},F_{m-1}(x^{(i)})+h_m(x^{(i)}))
\end{aligned}

  • \(argmin\): 使后面的式子达到最小值时的变量的取值
  • \(F_0(x)\):对于CART树来说就是初始情况,学习一个常数C即可
  • 有了\(F_0(x)\),下一部分就是加上误差函数和残差
  1. 学习残差

\begin{aligned}
r_m^{(i)}=-[\frac{\partial L(y^{(i)},F(x^{(i)}))}{\partial F(x^{(i)})}]
\end{aligned}

  • 负导数就是改进梯度方向
  1. 学习决策树拟合残差
    学习一个CART树来拟合残差
    \begin{aligned}
    C_{mj}=argmin_C \sum_{x \in k(m,j)} L(y^{(i)}, F_{m-1}(x^{(i)})+C)
    \end{aligned}

转载于:https://www.cnblogs.com/ColleenHe/p/11564768.html

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值