Echarts-无人售货机解析

目录

一、效果展示

二、内容解析

1、南丁格尔图

1.1、tooltip

1.2、legend

1.3、toolbox

1.4、series

1.5 南丁格尔图应用场景分析

2、折线图

2.1、tooltip

2.2、legend

2.3、grid

2.4、x,y轴

2.5、series

2.6 折线图应用场景分析

3、散点图

3.1、grid

3.2、legend

3.3、toolbox

3.4、series

3.5 散点图应用场景分析

4.条形图

4.1 tooltip

4.2 grid

4.3 x,y轴

4.5 series

4.6 条形图应用场景分析


一、效果展示

二、内容解析

在无人售货机里面首先需要的是一个整体框架来容纳内部的大小东西

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>售货机大数据分析平台</title>
<link rel="stylesheet" type="text/css" href="css/reset.css" />
</head>
<body>
<div class="header">
  <div class="sysName">
    <h1 class="tit">售货机大数据分析平台</h1>
  </div>
  <div class="menu">
    <ul>
      <li><a href="total.html">总数据</a></li>
      <li><a href="sale.html">销售分析</a></li>
      <li class="sysnameN"></li>
      <li class="on"><a href="inventory.html">库存分析</a></li>
      <li><a href="user.html">用户分析</a></li>
    </ul>
  </div>
</div>
<div class="chartWarp inventoryWarp">

  <div class="pure-g int-row1"> 
    <!-- 存销量 -->
    <div class="pure-u-1-3">
      <!-- 设备容量 -->
      <div class="chartBlock h55">
        <div class="hd">
          <div class="chartTit">
            <h2 class="titContent">设备容量</h2>
          </div>
        </div>
        <div class="bd">
          <div id="mVolume" class="chartDiv"></div>
        </div>
      </div>
      <!-- 品类库存占比 -->
      <div class="chartBlock h45">
        <div class="hd">
          <div class="chartTit">
            <h2 class="titContent">品类库存占比</h2>
          </div>
        </div>
        <div class="bd">
          <div id="categoryStock" class="chartDiv"></div>
        </div>
      </div>
    </div>
    <div class="pure-u-1-3">
      <div class="chartBlock">
        <div class="hd">
          <div class="chartTit">
            <h2 class="titContent">存销量</h2>
          </div>
        </div>
        <div class="bd">
          <div id="stockSales" class="chartDiv"></div>
        </div>
      </div>
    </div>
    <div class="pure-u-1-3"> 
      <!-- 商品存货周转天数 -->
      <div class="chartBlock h55">
        <div class="hd">
          <div class="chartTit">
            <h2 class="titContent">商品存货周转天数</h2>
          </div>
        </div>
        <div class="bd">
          <div id="turnaround" class="chartDiv"></div>
        </div>
      </div>
      <!-- 滞销商品 -->
      <div class="chartBlock h45">
        <div class="hd">
          <div class="chartTit">
            <h2 class="titContent">滞销商品</h2>
          </div>
        </div>
        <div class="bd">
          <div id="unsalable" class="chartDiv"></div>
        </div>
      </div>
    </div>
  </div>
</div>
</body>

</html>

框架代码中首先需要一个标题在头部,并且定义框架的样式

然后在body里面需要一个容器(div)“售货机大数据分析平台”

需要一个自动售货机需要一个菜单,内部由多个链接组成点击可以跳转网页

由菜单、容器和标题组成自动售货机的导航栏,不同的网页内容不同,每个网页都需要相同的导航栏联系起来

然后在body里面除了容器和链接,还需要创建多个不同的框架组成图中更小的框架

最后需要在代码中插入js文件

echarts.js是图表绘制所用echarts库

jquery-3.3.1.js是外部数据所用框架

charts.sale.js是图表数据内容(不同的数据用不同的文件,该js文件由自己编辑)

以上三者缺少一个图表会无法显示

框架以外的内容在js文件里面,接下来一销售界面为例子介绍js文件内容

// 销售金额
var saleM_Site = echarts.init(document.getElementById('saleM_Site'));
$.get("data/不同区域的各指标数据.json").done(function (data) {
    //data = JSON.parse(data),
	saleM_Site.setOption({
    tooltip : {
        trigger: 'item',
        formatter: "{b}:<br/>{c} 元<br/>({d}%)"
    },
    legend: {
        type:'scroll',
        data:data.where
    },
    toolbox: {
        show : false,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true,
                type: ['pie', 'funnel']
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'地点',
            type:'pie',
            radius : ["25%", '60%'],
            center : ['50%', '57%'],
            roseType : 'area',
            label:{
                show:true,
                formatter:'{c}'
            },
            data:data.sale
        },
        {
            type:'pie',radius:'25%',center:['50%','57%'],
            label: {normal:{position:'center',color:'#fff'}},
            labelLine:{normal:{show:false}},itemStyle:{color:'transparent'},
            data:[{value:1,name:'地点',tooltip:{formatter:' ',backgroundColor:'none'}}]
        },
    ]
		})
});



// 订单量
var orderQ_Site = echarts.init(document.getElementById('orderQ_Site'));
$.get("data/不同区域的各指标数据.json").done(function (data) {
    //data = JSON.parse(data),
	orderQ_Site.setOption({
    tooltip : {
        trigger: 'item',
        formatter:  "{b}:<br/>{c} 个<br/>({d}%)"
    },
    legend: {
        type:'scroll',
        data:data.where
    },
    toolbox: {
        show : false,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true,
                type: ['pie', 'funnel']
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'地点',
            type:'pie',
            radius : ["25%", '60%'],
            center : ['50%', '57%'],
            roseType : 'area',
            label:{
                show:true,
                formatter:'{c}'
            },
            data:data.order
        },
        {
            type:'pie',radius:'25%',center:['50%','57%'],
            label: {normal:{position:'center',color:'#fff'}},
            labelLine:{normal:{show:false}},itemStyle:{color:'transparent'},
            data:[{value:1,name:'地点',tooltip:{formatter:' ',backgroundColor:'none'}}]
        },
    ]
		})
});



// 毛利润
var grossM_Site = echarts.init(document.getElementById('grossM_Site'));
$.get("data/不同区域的各指标数据.json").done(function (data) {
    //data = JSON.parse(data),
	grossM_Site.setOption({
    tooltip : {
        trigger: 'item',
        formatter:  "{b}:<br/>{c} 元<br/>({d}%)"
    },
    legend: {
        type:'scroll',
        data:data.where
    },
    toolbox: {
        show : false,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true,
                type: ['pie', 'funnel']
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'地点',
            type:'pie',
            radius : ["25%", '60%'],
            center : ['50%', '57%'],
            roseType : 'area',
            label:{
                show:true,
                formatter:'{c}'
            },
            data:data.gross
        },
        {
            type:'pie',radius:'25%',center:['50%','57%'],
            label: {normal:{position:'center',color:'#fff'}},
            labelLine:{normal:{show:false}},itemStyle:{color:'transparent'},
            data:[{value:1,name:'地点',tooltip:{formatter:' ',backgroundColor:'none'}}]
        },
    ]
		})
});



// 客单价平均值
var unitP_Site = echarts.init(document.getElementById('unitP_Site'));
$.get("data/不同区域的各指标数据.json").done(function (data) {
    //data = JSON.parse(data),
	unitP_Site.setOption({
    tooltip : {
        trigger: 'item',
        formatter:  "{b}:<br/>{c} 元<br/>({d}%)"
    },
    legend: {
        type:'scroll',
        data:data.where
    },
    toolbox: {
        show : false,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true,
                type: ['pie', 'funnel']
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'地点',
            type:'pie',
            radius : ["25%", '60%'],
            center : ['50%', '57%'],
            roseType : 'area',
            label:{
                show:true,
                formatter:'{c}'
            },
            data:data.unit
        },
        {
            type:'pie',radius:'25%',center:['50%','57%'],
            label: {normal:{position:'center',color:'#fff'}},
            labelLine:{normal:{show:false}},itemStyle:{color:'transparent'},
            data:[{value:1,name:'地点',tooltip:{formatter:' ',backgroundColor:'none'}}]
        },
    ]
		})
});



// 商品销售数量Top10
var saleMtop10 = echarts.init(document.getElementById('saleMtop10'));
$.get("data/商品销售数量前10.json").done(function (data) {
    //data = JSON.parse(data),
	saleMtop10.setOption({
    tooltip: {
        trigger: 'axis',
        axisPointer: {
            type: 'shadow'
        }
    },
    grid: {
        left: '0%',
        top:'20',
        right:'2%',
        bottom: '10',
        containLabel: true
    },
    barCategoryGap:'40%',
    xAxis: {
        type: 'value',
        min: 0,
        interval: 5,
        boundaryGap: [0, 0.01],
        axisLine:{lineStyle:{width:0}},
    },
    yAxis: {
        type: 'category',
        splitLine:{lineStyle:{width:0}},
        data: data.商品名称
    },
    series: [
        {
            name: '售出总数量',
            type: 'bar',
            label:{
                position:'right',
                verticalAlign:'middle',
            },
            data: data.销售数量
        }
    ]
		})
});



// 商品价格区间
var priceRange = echarts.init(document.getElementById('priceRange'));
$.get("data/商品销量数量和价格数据.json").done(function (data) {
    //data = JSON.parse(data),
	priceRange.setOption({
    grid: {
        left: '3%',
        right: '10',
        bottom: '10',
        containLabel: true
    },
    tooltip : {
        showDelay : 0,
        formatter : function (params) {
                return params.seriesName + '<br/>'
                + '单价:' + params.value[0] + '<br/>'
                + '销量:' + params.value[1];
        },
        axisPointer:{
            show: true,
            type : 'cross',
            lineStyle: {
                type : 'dashed',
                width : 1
            }
        }
    },

    legend: {
        type:'scroll',
    },
    xAxis :{ scale:true},
    yAxis :{ scale:true},
	})
});
$.get("data/商品销量数量和价格数据.json").done(function (data) {
    //data = JSON.parse(data);
    var series=[];
    for(var i = 0;i < data.data.length;i++){
        series.push({
            name: data.data[i].name,
            type: 'scatter',
            data: [data.data[i].value],
            symbolSize:data.data[i].value[1]*2
        });
    }
    priceRange.setOption({
        series:series
    });
});



// 销售金额预测值与实际值
var saleAll = echarts.init(document.getElementById('saleAll'));
$.get("data/销售金额实际值与预测值.json").done(function (data) {
    //data = JSON.parse(data),
	saleAll.setOption({
    tooltip: {
        trigger: 'axis'
    },
    legend: {
        type:'scroll'
    },
    grid: {
        left: '10',
        right: '20',
        bottom: '10',
        containLabel: true
    },
    xAxis:  {
        type: 'category',
        boundaryGap: false,
        data: ['1日','2日','3日','4日','5日','6日','7日','8日','9日','10日',
		'11日','12日','13日','14日','15日','16日','17日','18日','19日','20日','21日','22日']
    },
    yAxis: {
        type: 'value',
        name: '金额(万元)',
        axisLabel: {
            formatter: '{value}'
        }
    },
    series: [
        {
            name:'销售金额实际值',
            type:'line',
            data:data.T,
            areaStyle: {
                normal: {
                    color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                        offset: 0,
                        color: 'rgba(194, 53, 49,.8)'
                    }, {
                        offset: 1,
                        color: 'transparent'
                    }])
                }
            },
        },
        {
            type:'line',
            name:'销售金额预测值',
            data:data.Y,
            areaStyle:{
                normal: {
                    color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                        offset: 0,
                        color: 'rgba(47, 69, 84,.4)'
                    }, {
                        offset: 1,
                        color: 'transparent'
                    }])
                }
            }
        },
    ]
		})
});



window.onresize = function() {
    saleM_Site.resize();
    orderQ_Site.resize();
    grossM_Site.resize();
    unitP_Site.resize();
    saleMtop10.resize();
    priceRange.resize();
    saleAll.resize();
}

var用于创建一个可操作的图表的可视化容器,在框架中可以看到销售图7个空的框架,因此每个框架中需要一个容器,在该表中就需要定义7个容器

1、南丁格尔图

一种基于饼图的变形,类型为roseType

var saleM_Site = echarts.init(document.getElementById('saleM_Site'));
$.get("data/不同区域的各指标数据.json").done(function (data) {
    //data = JSON.parse(data),
	saleM_Site.setOption({
    tooltip : {
        trigger: 'item',
        formatter: "{b}:<br/>{c} 元<br/>({d}%)"
    },
    legend: {
        type:'scroll',
        data:data.where
    },
    toolbox: {
        show : false,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true,
                type: ['pie', 'funnel']
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'地点',
            type:'pie',
            radius : ["25%", '60%'],
            center : ['50%', '57%'],
            roseType : 'area',
            label:{
                show:true,
                formatter:'{c}'
            },
            data:data.sale
        },
        {
            type:'pie',radius:'25%',center:['50%','57%'],
            label: {normal:{position:'center',color:'#fff'}},
            labelLine:{normal:{show:false}},itemStyle:{color:'transparent'},
            data:[{value:1,name:'地点',tooltip:{formatter:' ',backgroundColor:'none'}}]
        },
    ]
		})
});

1.1、tooltip

tooltip是设置图片的动态触发,可以在查看图片时显示指定图片的数据

1.2、legend

legend是一些图例的设置,下图中设置‘scroll’类型是把图例设置成水平摆放的样式

1.3、toolbox

toolbox是图表中的一个工具箱

1.4、series

series为南丁格尔图的主体

type设置图表类型,然后由roseTypes设置为南丁格尔图

radius设置图片半径,center设置图片的中心

1.5 南丁格尔图应用场景分析

1.气候数据分析:南丁格尔图可用于展示气候数据的季节性或年度变化。通过将一年中每个月的平均温度或降水量表示为不同的扇形,可以直观地比较不同月份的气候情况。

2.经济指标展示:在经济学领域,南丁格尔图可以用来展示经济指标的季节性波动或周期性变化。例如,展示每个季度或每年的国内生产总值(GDP)增长率,以及不同产业的贡献比例。

3.市场份额比较:南丁格尔图适合用于比较不同产品或品牌的市场份额,特别是在周期性市场调查中。通过将不同产品或品牌的销售额或市场份额表示为不同扇形,可以清晰地看出它们在市场中的相对位置。

4.人口结构分析:类似于双层饼图,南丁格尔图也可用于展示人口结构的分布情况,例如不同年龄段或性别的比例。每个扇形代表一个年龄段或性别群体,其大小和角度表示其在整体人口中的比例。

2、折线图

var saleAll = echarts.init(document.getElementById('saleAll'));
$.get("data/销售金额实际值与预测值.json").done(function (data) {
    //data = JSON.parse(data),
	saleAll.setOption({
    tooltip: {
        trigger: 'axis'
    },
    legend: {
        type:'scroll'
    },
    grid: {
        left: '10',
        right: '20',
        bottom: '10',
        containLabel: true
    },
    xAxis:  {
        type: 'category',
        boundaryGap: false,
        data: ['1日','2日','3日','4日','5日','6日','7日','8日','9日','10日',
		'11日','12日','13日','14日','15日','16日','17日','18日','19日','20日','21日','22日']
    },
    yAxis: {
        type: 'value',
        name: '金额(万元)',
        axisLabel: {
            formatter: '{value}'
        }
    },
    series: [
        {
            name:'销售金额实际值',
            type:'line',
            data:data.T,
            areaStyle: {
                normal: {
                    color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                        offset: 0,
                        color: 'rgba(194, 53, 49,.8)'
                    }, {
                        offset: 1,
                        color: 'transparent'
                    }])
                }
            },
        },
        {
            type:'line',
            name:'销售金额预测值',
            data:data.Y,
            areaStyle:{
                normal: {
                    color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                        offset: 0,
                        color: 'rgba(47, 69, 84,.4)'
                    }, {
                        offset: 1,
                        color: 'transparent'
                    }])
                }
            }
        },
    ]
		})
});



window.onresize = function() {
    saleM_Site.resize();
    orderQ_Site.resize();
    grossM_Site.resize();
    unitP_Site.resize();
    saleMtop10.resize();
    priceRange.resize();
    saleAll.resize();
}

2.1、tooltip

tooltip是设置图片的动态触发,可以在查看图片时显示指定图片的数据

2.2、legend

legend是一些图例的设置,下图中设置‘scroll’类型是把图例设置成水平摆放的样式

2.3、grid

设置图片边距

2.4、x,y轴

分别设置x,y轴,data用于设置x,y轴的数据

2.5、series

series为图的主体代码

type设置图表类型

2.6 折线图应用场景分析

1.突出显示异常值或趋势:折线图可以清楚地显示数据中的趋势和异常值。这使得可以快速识别需要进一步调查或采取行动的领域

2.监控关键指标:堆叠条形图和折线图组合图像可用于监控关键指标,例如销售额、客户数量或网站流量。这有助于快速识别趋势和模式,以便及时采取纠正措施

3.展示复合数据:堆叠条形图可以显示复合数据,其中每个条形图代表多个数据点。折线图可以叠加在条形图上,以显示这些数据点的总和或平均值

3、散点图

var priceRange = echarts.init(document.getElementById('priceRange'));
$.get("data/商品销量数量和价格数据.json").done(function (data) {
    //data = JSON.parse(data),
	priceRange.setOption({
    grid: {
        left: '3%',
        right: '10',
        bottom: '10',
        containLabel: true
    },
    tooltip : {
        showDelay : 0,
        formatter : function (params) {
                return params.seriesName + '<br/>'
                + '单价:' + params.value[0] + '<br/>'
                + '销量:' + params.value[1];
        },
        axisPointer:{
            show: true,
            type : 'cross',
            lineStyle: {
                type : 'dashed',
                width : 1
            }
        }
    },

    legend: {
        type:'scroll',
    },
    xAxis :{ scale:true},
    yAxis :{ scale:true},
	})
});
$.get("data/商品销量数量和价格数据.json").done(function (data) {
    //data = JSON.parse(data);
    var series=[];
    for(var i = 0;i < data.data.length;i++){
        series.push({
            name: data.data[i].name,
            type: 'scatter',
            data: [data.data[i].value],
            symbolSize:data.data[i].value[1]*2
        });
    }
    priceRange.setOption({
        series:series
    });
});

3.1、grid

设置图片边距

3.2、legend

legend是一些图例的设置,下图中设置‘scroll’类型是把图例设置成水平摆放的样式

3.3、toolbox

toolbox是图表中的一个工具箱

3.4、series

图片的主体,type设置图片的类型,scatter为散点图类型

3.5 散点图应用场景分析

1. 关联性分析:散点图可以用来展示两个变量之间的关联性,例如销售额和广告投入之间的关系,或者学习时间和考试成绩之间的关系。通过观察散点图的分布情况,可以直观地判断出变量之间的相关性。

2. 异常检测:散点图可以帮助用户发现数据中的异常值或离群点。通过观察散点图中是否存在偏离主体分布的点,可以及时发现数据中的异常情况,并进行进一步的分析和处理。

3. 趋势分析:散点图可以展示数据的趋势和分布情况,例如随着时间推移,某个指标的变化趋势如何。通过观察散点图中点的分布情况,可以推断出数据的整体趋势,进而做出相应的决策。

4. 空间分布:对于地理数据或空间数据,散点图可以展示不同地点或区域之间的分布情况。例如,城市人口密度的分布情况或者地震发生的位置分布等,都可以通过散点图来展示。

4.条形图

var saleMtop10 = echarts.init(document.getElementById('saleMtop10'));
$.get("data/商品销售数量前10.json").done(function (data) {
    //data = JSON.parse(data),
	saleMtop10.setOption({
    tooltip: {
        trigger: 'axis',
        axisPointer: {
            type: 'shadow'
        }
    },
    grid: {
        left: '0%',
        top:'20',
        right:'2%',
        bottom: '10',
        containLabel: true
    },
    barCategoryGap:'40%',
    xAxis: {
        type: 'value',
        min: 0,
        interval: 5,
        boundaryGap: [0, 0.01],
        axisLine:{lineStyle:{width:0}},
    },
    yAxis: {
        type: 'category',
        splitLine:{lineStyle:{width:0}},
        data: data.商品名称
    },
    series: [
        {
            name: '售出总数量',
            type: 'bar',
            label:{
                position:'right',
                verticalAlign:'middle',
            },
            data: data.销售数量
        }
    ]
		})
});

4.1 tooltip

设置图片的动态触发

4.2 grid

设置图片边距

4.3 x,y轴

4.5 series

用于设置图文的类型位置颜色

4.6 条形图应用场景分析


1.比较不同类别的数据:堆叠条形图可以显示不同类别数据的总和,而折线图可以显示单个类别数据的趋势。这使得可以轻松比较不同类别的绩效或增长率

2.显示数据与目标的比较:折线图可以绘制一条水平线或区域,表示目标或阈值。这使得可以轻松查看数据是否达到或超过目标

3.突出显示异常值或趋势:折线图可以清楚地显示数据中的趋势和异常值。这使得可以快速识别需要进一步调查或采取行动的领域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值