Problem
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
Solution
动态规划之Longest Increasing Subsequence
思路:
for j = 1, 2, . . . , n:
L(j) = 1 + max{L(i) : (i, j) ∈ E}
return max L(j)
O{N*N}
时间复杂度O(n*n)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> l(n, 1);
for (int i = 0; i != n; ++i) {
for (int j = 0; j != i; ++j) {
if (nums[j] < nums[i] && l[j] >= l[i]) {
l[i] = l[j] + 1;
}
}
}
int max = 0;
for (int i = 0; i != n; ++i) {
max = (l[i] > max ? l[i] : max);
}
return max;
}
};
O{N*logN}
终于理解了时间复杂度为O(N*logN)的算法了…
还重新学习了下binary search,直接把之前自己用的binary search给推了…
int searchInsert(vector<int>& nums, int l, int r, int target) {
while (r-l > 1) {
int m = l + (r-l)/2;
if (nums[m] >= target) {
r = m;
}
else {
l = m;
}
}
return r;
}
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
if (n == 0) {
return 0;
}
vector<int> v(n, 0);
int l = 1;
v[0] = nums[0];
for (int i = 1; i != n; ++i) {
if (nums[i] < v[0]) {
v[0] = nums[i];
}
else if (nums[i] > v[l-1]) {
v[l++] = nums[i];
}
else {
int k = searchInsert(v, -1, l-1,nums[i]);
v[k] = nums[i];
}
}
return l;
}
};