300. Longest Increasing Subsequence

Problem

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,

Given [10, 9, 2, 5, 3, 7, 101, 18],

The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

Solution

动态规划之Longest Increasing Subsequence

思路:

for j = 1, 2, . . . , n:
L(j) = 1 + max{L(i) : (i, j) ∈ E}
return max L(j)

O{N*N}

时间复杂度O(n*n)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();

        vector<int> l(n, 1);

        for (int i = 0; i != n; ++i) {
            for (int j = 0; j != i; ++j) {
                if (nums[j] < nums[i] && l[j] >= l[i]) {
                    l[i] = l[j] + 1;
                }
            }
        }

        int max = 0;
        for (int i = 0; i != n; ++i) {
            max = (l[i] > max ? l[i] : max);
        }

        return max;
    }
};

O{N*logN}

终于理解了时间复杂度为O(N*logN)的算法了…

详细解释在这里1这里2

还重新学习了下binary search,直接把之前自己用的binary search给推了…

int searchInsert(vector<int>& nums, int l, int r, int target) {
    while (r-l > 1) {
        int m = l + (r-l)/2;
        if (nums[m] >= target) {
            r = m;
        }
        else {
            l = m;
        }
    }
    return r;
}

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();

        if (n == 0) {
            return 0;
        }

        vector<int> v(n, 0);
        int l = 1;

        v[0] = nums[0];

        for (int i = 1; i != n; ++i) {
            if (nums[i] < v[0]) {
                v[0] = nums[i];
            }
            else if (nums[i] > v[l-1]) {
                v[l++] = nums[i];
            }
            else {
                int k = searchInsert(v, -1, l-1,nums[i]);
                v[k] = nums[i];
            }
        }

        return l;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值