问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
1 2 3
2 1 5
样例输出
14
动态规划问题
f[i][j][k][p] 表示i,j的位置,取k个宝物,当前最大值为P的方案总数。
把f[1][1][][]的情况先打出来,然后直接状态转移即可。 状态转移方程就是
f[i][j][l][p] =(f[i][j][l][p] + f[i - 1][j][l][p] ) % mod;
f[i][j][l][p] =(f[i][j][l][p] + f[i][j - 1][l][p] ) % mod;
f[i][j][l][p] =(f[i][j][l][p] + f[i][j - 1][l][p] ) % mod;
f[i][j][l][a[i][j]] = (f[i][j][l][a[i][j]] + f[i - 1][j][l - 1][p]) % mod;
f[i][j][l][a[i][j]] = (f[i][j][l][a[i][j]] + f[i][j - 1][l - 1][p]) % mod;
f[i][j][l][a[i][j]] = (f[i][j][l][a[i][j]] + f[i][j - 1][l - 1][p]) % mod;
这4个加起来即可。
#include <iostream>
#include<cstring>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int mod = 1000000007;
int f[60][60][16][16];
int n, m, k;
int a[60][60];
int main()
{
scanf("%d%d%d", &n, &m, &k);
memset(f,0,sizeof(f));
for (int i =1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j) {scanf("%d", &a[i][j]); a[i][j]++;} //物品价值为1-13
// for (int i = 0; i <= 13; ++ i) f[1][1][1][i] = f[1][1][0][i]= 0;
f[1][1][1][a[1][1]] = 1;
f[1][1][0][0] = 1;
for (int i = 1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j)
for (int l = 0; l <= k; ++ l) //用了l个物品,
{
for (int p = 0; p <= 13; ++ p)//当前最大值 不取的情况
{
f[i][j][l][p] =(f[i][j][l][p] + f[i - 1][j][l][p] ) % mod;
f[i][j][l][p] =(f[i][j][l][p] + f[i][j - 1][l][p] ) % mod;
}
for (int p = 0; p < a[i][j]; ++ p)
{
f[i][j][l][a[i][j]] = (f[i][j][l][a[i][j]] + f[i - 1][j][l - 1][p]) % mod;
f[i][j][l][a[i][j]] = (f[i][j][l][a[i][j]] + f[i][j - 1][l - 1][p]) % mod;
}
}
int ans = 0;
for (int i = 0; i <= 13; ++ i)
ans = (ans + f[n][m][k][i]) % mod;
cout<<ans<<endl;
return 0;
}