使用 C# 和 ONNX Runtime 加载和运行 ONNX 模型

本文介绍了如何在Windows环境下使用C#和ONNXRuntime库加载ONNX模型并进行推理。通过创建OnnxModelWrapper类,文章详细阐述了从准备工作、模型封装到运行推理的步骤,并提供了加载图像、处理输出数据的示例代码,展示了在.NET环境中应用机器学习模型的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

今天突然有人和我说想要实现windows环境下c#调用tensorflow模型,我想着ONNX不是可以搞嘛,然后我翻了一下以前做的,没翻到,就查询了下资料,鼓捣出来了

下面将介绍如何使用 C# 和 ONNX Runtime 库加载并运行 ONNX 模型。ONNX是啥我就不说了,留个链接


废话不说,show me code!

一、准备工作

首先,确保您已经安装了 .NET Core SDK。然后,创建一个新的控制台应用程序项目:

dotnet new console -n OnnxInferenceExample  
cd OnnxInferenceExample 

接下来,添加以下 NuGet 包到您的项目中:

  • Microsoft.ML.OnnxRuntime
  • Microsoft.ML.OnnxRuntime.Managed
  • System.Drawing.Common (用于图像处理)

可以通过以下命令安装这些包:

dotnet add package Microsoft.ML.OnnxRuntime  
dotnet add package Microsoft.ML.OnnxRuntime.Managed  
dotnet add package System.Drawing.Common  

二、实现 ONNX 模型封装

为了方便地加载和运行 ONNX 模型,我们将创建一个 OnnxModelWrapper 类。这个类将负责加载模型、准备输入数据和运行推理。以下是 OnnxModelWrapper 类的完整实现,包括构造函数和 RunInference 方法。

using Microsoft.ML.OnnxRuntime;  
using Microsoft.ML.OnnxRuntime.Tensors;  
using System.Collections.Generic;  
using System.Linq;  
  
namespace OnnxModelLibrary  
{
     
    public class OnnxModelWrapper  
    {
     
        private string _modelPath;  
        private InferenceSession _session;  
        private readonly string _inputName;  
  
        public OnnxModelWrapper(string modelPath)  
        {
     
            _modelPath = modelPath;  
            _session = new InferenceSession(_modelPath);  
            // 获取模型的输入节点名称  
            _inputName = _session.InputMetadata.Keys.First();  
        }  
  
        public float[] RunInference(float[] inputData, int inputSize)  
        {
     
            // 将输入数据调整为 (1, 28, 28) 形状的张量  
            var reshapedInputData = new DenseTensor<float>(new[] {
    1, 28, 28 });  
            for (int i = 0; i < 28; i++)  
            {
     
                for (int
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值