稳健估计/M估计/最小二乘法

本文介绍了稳健估计的概念及其在存在粗差情况下的应用,并基于最小二乘法讨论了多元线性回归理论,进一步探讨了M估计的加权最小二乘估计方法。此外,还提到了极限学习机作为单隐层前馈神经网络的一种实现形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:稳健估计是在粗差不可避免的情况下,选择适当的估计方法使未知量估计尽可能减免粗差的影响,得出正常模式下的最佳估计。本文先介绍基于最小二乘法的多元线性回归理论,再引出基于M估计的加权最小二乘估计。
关键词:稳健估计,M估计,最小二乘法,加权,极限学习机
这里写图片描述
这里写图片描述
这里写图片描述

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值