NVIDIA_A100_SXM2_40GB加速卡详细参数

记录了NVIDIA_A100_SXM2_40GB加速卡的详细参数
参考链接: https://www.xincanshu.com/gpu/NVIDIA_A100_SXM4_40_GB/canshu.html

主要参数

参数描述
核心频率1095 MHz核心 一秒内能够进行多少处理周期
Turbo频率1410 MHz突发加速频率,类似于CPU睿频
流处理单元6912 个负责处理图像不同方面的构造
核心架构Ampere核心架构代号
GPU代号GA100核心架构代号
生产工艺7 nm越小的尺寸代表芯片越新。
TDP功耗400W越低的TDP 通常表示它消耗的电量更少。

内存参数

参数描述
内存频率2.4 Gbps
内存类型HBM2
内存位宽5120 bit
最大显存32 GB

参数补充

参数描述
代工厂TSMC
核心面积826 mm²
一级缓存1292 KB
二级缓存40 MB
光栅单元432
纹理单元160
SM count108
Tensor cores432
建议电源800 W
总线接口PCIe 4.0 x16

理论性能

参数描述
像素填充率225.6 GPixel/s
纹理填充率609.1 GTexel/s
显存带宽1555 GB/s
FP1677.97 TFLOPS (4:1)半精度浮点运算次数
FP3219.49 TFLOPS单精度浮点运算次数
FP649.746 TFLOPS (1:2)双精度浮点运算次数

显卡特性

参数描述
DirectXN/A
OpenGLN/A
OpenCL3.0
VulkanN/A
CUDA8.0
Shader modelN/A

### PCIe接口与SXM5接口的主要差异及各自特点 #### 1. 物理形态与安装方式 PCIe 接口是一种广泛应用于计算机扩展槽的标准接口形式,支持多种设备的接入。其物理形态为标准尺寸的插卡式设计,便于用户自行安装和更换硬件组件。 相比之下,SXM5 接口专为高性能计算优化而设计,采用更紧凑的设计理念,直接焊接于主板之上,减少了信号传输路径中的干扰因素,提升了系统的稳定性和性能表现[^1]。 #### 2. 数据传输速率 对于基于 PCIe 的 GPU 来说,尽管最新版本 PCIe Gen4 已经能够提供显著的速度提升,但在实际应用中仍然难以匹敌 NVLink 技术所带来的超高带宽优势。例如,在浪潮 NF5488A5 HGX 系统上,每一块 A100 或 H100 SXM 卡之间可以通过多达四条 NVLink 进行互连,形成总计高达 900 GB/s 的双向通信带宽;然而即使是最快的 PCIe 实现方案也无法达到如此高的吞吐量水平。 #### 3. 功耗管理 由于 SXM5 设计之初就考虑到了功耗效率问题,因此它能够在保持高效能的同时降低整体能耗开销。这不仅有助于减少散热需求,还能进一步提高数据中心级别的能源利用率。另一方面,虽然现代 PCIe 解决方案也在不断改进自身的电源管理系统,但由于架构上的局限性,在这方面往往不如专用型接口来得出色。 #### 4. 应用场景适应度 当涉及到通用目的图形处理器 (GPGPU) 编程模型时,大多数开发者都熟悉如何利用现有的软件栈针对 PCIe 平台编写应用程序。这是因为该类接口已经存在多年,并拥有庞大的社区支持和技术文档资源可供参考。不过随着 AI 和机器学习领域的发展趋势日益明显,越来越多的研究人员倾向于选择那些专门为加速此类工作负载定制化打造的产品线——比如 NVIDIA 自家推出的 HGX 架构及其配套使用的 SXM 类型模块便是其中佼佼者之一。 ```python # 示例代码用于说明不同接口下的数据传输模拟 import time def simulate_data_transfer(interface_type, data_size_gb=1): if interface_type == "pcie": transfer_rate_gbps = 64 # 假设使用PCIe Gen4 x16配置 elif interface_type == "sxm5": transfer_rate_gbps = 900 / 8 # 转换成单向平均值 seconds_per_gb = 8 * data_size_gb / transfer_rate_gbps print(f"{interface_type.upper()} transferring {data_size_gb}GB takes approximately {seconds_per_gb:.2f}s") simulate_data_transfer("pcie", 1) simulate_data_transfer("sxm5", 1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值