1、数据连接-merge()函数
- merge只能进行横向连接,也就是将左表和右表按照key进行拼接。
- merge函数只能操作两张表。
- 典型应用场景:针对同一个键存在两张不同字段的表,根据键整合到一张表里面。
- 在连接的过程中,merge方法会默认寻找两个表中的公共列,并将找到的公共列作为连接键进行连接。
- merge的默认的表连接方式是内连接,也就是左表中的公共列的值都可以在右表对应的公共列找到,右表公共列的值也可以在左表中对应的公共列找到。
- 内连接(inner)/左连接(left)/右连接(right)/外连接(outer)。
2、数据合并-concat
- concat函数既可以实现横向拼接也可以实现纵向拼接,默认纵向连接。
- concat函数可以对多表进行操作。
- concat函数只能单纯的表拼接,只按索引拼接不查公共列。
3、数据分组-groupby
3.1 groupby()函数
3.2 agg()函数
- agg()函数,提供的聚合功能允许在一次计算中按组计算多个统计数据,也就是可以选择多种聚合计算方式。
- groupby函数可以调用agg函数,实现在一次计算中按组计算多个统计数据。
4、数据透视表
4.1 Pivot_table()函数
- pivot_table()透视功能,最基本的就是将普通列的内容转换为索引或者列名,并进行各种汇总计算。
4.2 stack()函数 & unstack()函数
- 将DataFrame的columns和index进行相互转换。因为DataFrame的计算是分axis(轴)的,有时候将index和columns转换后,计算会更方便。
- 使用Unstack()函数是stack()函数的逆操作。
5、Pandas中的高阶函数
5.1 map()函数
- 根据提供的函数对指定序列做逐一映射(同python内置的map函数一样)。
- 语法:Series.map(function or dict)。
5.2 apply()函数-重要
5.2.1 Series.apply()语法
5.2.2 DataFrame.apply()语法&axis
5.3 applymap()函数
- 会对DataFrame中每个元素执行指定的方法(函数或lambda表达式)的操作。
- 语法:DataFrame.applymap(func)。
- 应用在DataFrame的每个元素中。