Pandas(三)数据高阶处理

1、数据连接-merge()函数

  1. merge只能进行横向连接,也就是将左表和右表按照key进行拼接。
  2. merge函数只能操作两张表
  3. 典型应用场景:针对同一个键存在两张不同字段的表,根据键整合到一张表里面。
  4. 在连接的过程中,merge方法会默认寻找两个表中的公共列,并将找到的公共列作为连接键进行连接。
  5. merge的默认的表连接方式是内连接,也就是左表中的公共列的值都可以在右表对应的公共列找到,右表公共列的值也可以在左表中对应的公共列找到。
  6. 内连接(inner)/左连接(left)/右连接(right)/外连接(outer)。

2、数据合并-concat

  1. concat函数既可以实现横向拼接也可以实现纵向拼接,默认纵向连接。
  2. concat函数可以对多表进行操作。
  3. concat函数只能单纯的表拼接,只按索引拼接不查公共列。

3、数据分组-groupby

3.1 groupby()函数

3.2 agg()函数

  1. agg()函数,提供的聚合功能允许在一次计算中按组计算多个统计数据,也就是可以选择多种聚合计算方式。
  2. groupby函数可以调用agg函数,实现在一次计算中按组计算多个统计数据。

4、数据透视表

4.1 Pivot_table()函数

  1. pivot_table()透视功能,最基本的就是将普通列的内容转换为索引或者列名,并进行各种汇总计算。

4.2 stack()函数 & unstack()函数

  1. 将DataFrame的columns和index进行相互转换。因为DataFrame的计算是分axis(轴)的,有时候将index和columns转换后,计算会更方便。
  2. 使用Unstack()函数是stack()函数的操作。

5、Pandas中的高阶函数

5.1 map()函数

  1. 根据提供的函数对指定序列做逐一映射(同python内置的map函数一样)。
  2. 语法:Series.map(function or dict)。

5.2 apply()函数-重要

5.2.1 Series.apply()语法

5.2.2 DataFrame.apply()语法&axis

5.3 applymap()函数

  1. 会对DataFrame中每个元素执行指定的方法(函数或lambda表达式)的操作。
  2. 语法:DataFrame.applymap(func)。
  3. 应用在DataFrame的每个元素中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值