概念:
1、载波频偏(Carrier Frequency Offset, CFO)
2、定时偏差(Symbol Time Offset, STO)
3、公共相位误差(Common Phase Error, CPE)
4、采样频率偏差(Sample Rate Offset, SRO)
前言:CFO,STO,CPE,SRO都将导致OFDM接收信号的相位误差(Phase Error, PE),影响传输效果。对以上畸变的纠正流程大致可总结为:(1)定时:通过同步算法尽可能减小时差STO;(2)校频:估计并补偿频偏CFO;(3)相位跟踪:利用导频信号实时估计并补偿残留相偏,包括CPE与STO,CPE主要来自残留CFO,而STO主要来自SRO,二者都呈现随时间累积的特性。
相偏参数估计的基本思路:根据重复信号或是已知训练序列进行相关运算。
一、基本模型
1、载波频偏(Carrier Frequency Offset, CFO): ϵ=ϵI+ϵF (整数阶与分数阶),表现为频移
产生原因:(1)接收与发射晶体振荡器的本振频率偏移;(2)运动导致多普勒频移
估计方法:(1)时域相关:基于CP、基于训练序列;(2)频域:基于两个相同的连续训练符号(Moose)
影响:(1)整数阶频偏引起频域符号移位;(2)分数阶频偏引起子载波间干扰ICI,表现为星座点符号幅度畸变与相位旋转。
常采用相对记法:单位ppm(parts per million,千万分之一)
Δfc 为载波频偏, fc 为载波频率。
2、定时偏差(Symbol Time Offset, STO): δ=δI+δF(整数阶与分数阶),表现为时移
产生原因:(1)接收同步误差;(2)采样时钟偏移
估计方法:时域或频域的相关
影响:(1)过大的整数阶时差将引起符号间干扰ISI;(2)星座点相位旋转。
CFO与STO共同作用到接收信号后,信号频域与时域的表达式分别为(忽略信道与噪声):
其中, ϵ 为频偏,以子载波间隔为单元, ϵ=Δfcfs/N , Δfc 为载波频偏, fs 为采样频率, N 为FFT点数; δ 是延时,以采样周期为单位。
二、相位跟踪
经过定时与载频校准之后,信号仍然存在相位误差(Phase Error, PE),且相位误差会随着时间不断累积,所以还需要实时进行相位跟踪。
频域相位误差PE被建模为CPE与STO之和:
其中,代表第 m 个OFDM符号的索引, k 是子载波索引。因为经过频率校准之后,残留CFO往往较小,近似认为其引起的相位误差在一个符号内为常数,与 k 无关,仅随时间累积,记作CPE(m),对所有子载波施加相同相位旋转;同样,SRO导致STO随时间累积,记作 STO(m) ,但其作用在时域体现为时延,因而对不同子载波施加关于 k 的线性相位旋转。
3、公共相位误差(Common Phase Error, CPE):表现为解调后各个子载波星座点固定角度的旋转。
假设经过频偏校准后,残留的微小频差为 Δfr
根据式(1),由残留CFO引起的时域信号畸变情况为:
y(m,n)表示第m个接收符号中第n个采样点的信号值,G表示每个符号的样点总长度, G=N+NCP ,是Data点数与CP循环前缀长度之和。TPE(m,n)表示时域相位误差,因为Δfr很小,忽略 (NCP+n)Δfr 的影响,认为残留CFO对第m个符号施加了CPE(m)的公共相位误差:
时域公共相位误差将导致频域星座点产生同样的固定相位旋转:
4、采样频率偏差(Sample Rate Offset, SRO):收发采样时钟的偏差,又称作做“采样时钟频率偏差(Sample Clock Frequency Offset, SFO)”,SRO会导致随时间不断累积的STO。
产生原因:接收与发射晶体采样时钟的频率偏移
影响:随时间不断累积的定时误差STO
补偿方法:相位跟踪
也常采用相对记法:单位ppm(parts per million,千万分之一)
Δfs 为采样时钟频率偏差, fs 为采样频率。
记标准采样周期为 Ts=1fs ,实际采样周期为 Ts′=1fs−Δfs ,记
则SRO影响下时域接收信号为:
xt(⋅) 表示连续信号, x(⋅) 表示以 Ts 采样后离散时间信号;在m个符号内,忽略 (NCP+n)μ 的影响,假设STO(m)保持不变:
时域的定时误差STO(m)将导致频域星座点随子载波k线性增长的相位旋转:
综和考虑CPE与STO后频域信号为:
相位跟踪阶段的频域相位误差的完整表达式为:
基于此模型,利用导频信号即可对相位进行跟踪与补偿。
【注】:常用的相位误差模型都以符号m为单元进行处理,过程中进行了近似,忽略了具体样本点索引n之间的相位差异。这样的近似可以得到一个关于m和k的线性模型,运算简单,且实践证明这对于常规通信场景已经足够;若要求更高的相位跟踪精度,也可采用原始模型,不进行近似,但这意味着更复杂的运算与处理。