如何用另一种方式描述矩阵——特征值与特征向量

——是否可以将矩阵变换看作对某个状态的一步操作

接上文,我们提到了矩阵的逆,探讨了矩阵变换可看作是旋转和伸缩的组合,根据这个思路去寻找求矩阵逆的方式,最后也提到了一个问题:矩阵可以先伸缩再旋转,也可以先旋转再伸缩达到最终形态,是不是意味着矩阵有个共性的变换特征呢?这里我们参考矩阵乘法可交换条件文中提到的一个例子,假设矩阵的伸缩与旋转变换可以简单看作坐标值的倍乘与加数。如向量L:(1,0)经矩阵变换为坐标为:(2,1),可以将其看作是横坐标乘以2,再纵坐标加1,也可以看作是纵坐标加1,再横坐标乘以2。那么我能否将其看成是纵坐标加0.5后再与横坐标一起乘以2呢?用代数来表达就是 2a , b+1 = 2(a ,(b+1)/2)。 而是否存在向量(a,b)使得:2(a,(b+1)/2) = n(a,b)呢?即拉伸2倍后与原来是共线的呢?对于上面这个例子,(1,1)是满足的。但是要注意到,若是在Y轴上仅有伸缩变换,纵坐标为0的向量是无法体现的,当然这也是正交坐标系的某一个优势。

到此,我们不如先放下空间上的脑补,在矩阵乘法里我们已经探讨了矩阵乘法的物理意义的同时,也分析了代数表达式的几何反映,现在让我们再看一下矩阵乘法的代数表达式:C = AB,则:

A:\begin{bmatrix} x1 & y1\\ x2 & y2 \end{bmatrix},B: \begin{bmatrix} {x1}' &y1{}' \\ x2{}' &y2{}' \end{bmatrix},则C: \begin{bmatrix} x1x1{}'+y1x2{}' & x1y1{}' + y1y2{}'\\ x2x1{}'+y2x2{}' & x2y1{}' + y2y2{}' \end{bmatrix}

我们可以看出,对于向量 (x1,y1) 变换后的结果为:(x1x1' + y1x2',  x1y1'+y1y2')。我们已经说过了其结果即为:以矩阵B的两个行向量的横、纵坐标权值和。于此同时我们可以类似上面思考的方式,将其试着用一个乘法运算表达:

(x1x1' + y1x2', x1y1'+y1y2')=  ( x1* (x1' + y1x2'/x1) ,  y1* (x1y1'/y1 + y2') )。所以只需要求得向量(x1,y1)满足: (x1' + y1x2'/x1) = (x1y1'/y1 + y2'),即可求得与(x1,y1)共线的向量,且伸缩的大小就是:(x1' + y1x2'/x1) = (x1y1'/y1 + y2') 的长度。既然到了这一步,不妨就解出这个表达式的解吧:

移项:y1x2'/x1 = (x1y1'/y1 + y2') - x1'

通分:y1^2 = x1^2 * y1'/x2' + x1 * y1 * (y2'-x1')/x2'.

为了避免晃眼,将其他值改为系数: y^2 =  a x^2 + b xy.  ( a = y1'/x2', b = (y2'-x1')/x2')

二元二次方程:y^2 - bx y - a x^2 = 0. 

很明显。x =0始终有解(维度相同时,零向量当然是可以的),将x当作常数,直接用判别式计算,可求出两个解分别为:
y = bx + (b^2 + 4a)^1/2 x

y = bx - (b^2 + 4a)^1/2  x.

这时我们可以看出,是有两个解的(判别式大于0:b^2 + 4a > 0),且b和a决定了斜率。

当 4a = - b^2 时,只有一个解,当 4a < -b^2时,无解。

——特征向量的的结构

我们利用工具尝试画出几个定量的方程图像:

b = 0, a != 0时,a决定了图像与X轴(Y轴)的夹角,动作上可以认为是以X轴为镜像对称的两条线为轴:

 b != 0, a != 0时,可以认为是a决定了图像与X轴(Y轴)的夹角,b(与a)决定了旋转的角度,动作上可以认为是以X轴为镜像对称的两条线,绕原点旋转一定角度为轴:

a = 0, b != 0时,X轴本身就是其中的一条线,b决定了另一条线与斜率为1的直线的角度,动作上可以认为是以X轴为一个轴,以斜率1为初始点,绕原点旋转一定角度为另一个轴:

 当 a < 0时,b逐渐变大时,直到4a = - b^2 时(只有一个解),两条线的夹角逐渐变小,并最终成为一条线。而当继续调大b值(或者减小a值),将无解(或者说只有0解)。

从上面的一些数据和图像中,其实我们已经可以看出端倪,一般情况下N维的矩阵应该最多就会有N个轴,但特殊情况会只有一个轴,以及没有轴。回头再去看看当初要求解的方程,可以看出其有二次型的影子(目前没有说到,权当一个联想,而且这也反映了有时候某些知识是相通的,或者某些知识的现实历史性,导致知识的场景与应用领域并非初衷,就好比矩阵刚开始是作为信息计算,解方程出现的,鸡你太美是作为歌曲出现的-囧)。

如果需要再详细点,再清楚点,那么几何上的操作与代数上的数据表达又是如何对应的呢?

下面我们再梳理一番慢慢探讨:

// TODO 下图作为行向量与列向量的思考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值