lightgbm加载大规模数据

在将数据加载到 LightGBM 的 Dataset 中时,减少内存占用,提升效率的优化建议:

1. 分块处理数据

import lightgbm as lgb

# 假设你已经有一部分数据处理完毕并存放在内存或 memmap 中
train_data = lgb.Dataset(data=None, label=None, free_raw_data=False)

batch_size = 100000  # 根据系统内存大小调整

for start_idx in range(0, total_samples, batch_size):
    end_idx = min(start_idx + batch_size, total_samples)
    data_block = load_data_block(start_idx, end_idx)  # 自定义函数来加载数据块
    label_block = load_label_block(start_idx, end_idx)  # 自定义函数来加载标签块
    
    # 将每个数据块添加到 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值