lightgbm模型调用

这篇博客介绍了如何使用原生lightgbm库和sklearn接口训练及预测模型。首先展示了lightgbm的原生API,包括模型训练、保存、加载和预测。接着,通过sklearn的LGBMRegressor实现相同功能,并利用GridSearchCV进行参数调优,最后将模型保存和加载。博客还涉及了模型评估指标和早停策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、原生形式使用lightgbm(import lightgbm as lgb)

# 模型训练
gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5)
 
# 模型保存
gbm.save_model('model.txt')
 
# 模型加载
gbm = lgb.Booster(model_file='model.txt')
 
# 模型预测
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)

二、Sklearn接口形式使用lightgbm(from lightgbm import LGBMRegressor)

from lightgbm import LGBMRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
 
 
# 模型训练
gbm = LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='l1', early_stopping_rounds=5)
 
# 模型存储
joblib.dump(gbm, 'loan_model.pkl')
# 模型加载
gbm = joblib.load('loan_model.pkl')
 
# 模型预测
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值