LightGBM模型架构实现

本文档介绍了使用Python和Jupyter实现LightGBM模型的基本步骤,包括加载数据、数据集划分、转换为Dataset格式、参数配置、模型训练、预测及结果保存。适合初学者参考。
摘要由CSDN通过智能技术生成

本文用来记录如何初步实现lgb模型,但尚未对信息进行具体的细化,供各位初学者参考。

1. 加载数据

首先需要导入我们的训练数据

import pandas as pd
train_data = pd.read_table('./data/train.txt') # 这里是导入训练数据,我采用的是相对路径查看文件

2. 划分数据集

机器学习模型中对于训练模型需要训练集和测试集,这个需要我们自己进行划分,这里可以调用train_test_split进行数据集的划分

from sklearn.model_selection import train_test_split
X = train_data.iloc[:, :-1]   
# X
y = train_data['target']   # y为目标数据,也就是我们最后要预测的数据。
X_train, X_test, y_trai
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值