本文用来记录如何初步实现lgb模型,但尚未对信息进行具体的细化,供各位初学者参考。
1. 加载数据
首先需要导入我们的训练数据
import pandas as pd
train_data = pd.read_table('./data/train.txt') # 这里是导入训练数据,我采用的是相对路径查看文件
2. 划分数据集
机器学习模型中对于训练模型需要训练集和测试集,这个需要我们自己进行划分,这里可以调用train_test_split进行数据集的划分
from sklearn.model_selection import train_test_split
X = train_data.iloc[:, :-1]
# X
y = train_data['target'] # y为目标数据,也就是我们最后要预测的数据。
X_train, X_test, y_trai