大气热力学(4)——流体静力学方程和压高方程

本篇文章源自我在 2021 年暑假自学大气物理相关知识时手写的笔记,现转化为电子版本以作存档。相较于手写笔记,电子版的部分内容有补充和修改。笔记内容大部分为公式的推导过程。

4.1 流体静力学方程

假设大气相对于地面处于静止状态,考虑一个具有单位水平横截面积的垂直空气柱,气柱内处于高度 z z z z + δ z z + \delta z z+δz 之间的空气质量为 ρ δ z \rho \delta z ρδz,其中 ρ \rho ρ 是高度 z z z 处的密度。作用于此空气柱的向下的重力是 g ρ δ z g \rho \delta z gρδz,其中 g g g 是高度 z z z 处的重力加速度。

现在考虑由于周围空气压强而造成的作用于高度 z z z z + δ z z + \delta z z+δz 之间的空气薄片上净的垂直方向上的力。假设从高度 z z z z + δ z z + \delta z z+δz 的压强变化值为 δ p \delta p δp,因为压强是随高度而减小的,所以 δ p < 0 \delta p < 0 δp<0。在静力平衡条件下有:

− δ p = g ρ δ z -\delta p = g \rho \delta z δp=gρδz

或:

g δ z = − δ p ρ = − α δ p g \delta z = -\frac{\delta p}{\rho} = - \alpha \delta p gδz=ρδp=αδp

式中, α = 1 ρ \alpha = \frac{1}{\rho} α=ρ1气体比容,即 1kg 气体在压强为 p p p、温度为 T T T 时所占的体积。

δ z → 0 \delta z \rightarrow 0 δz0,则上式可写为:

∂ p ∂ z = − g ρ \frac{\partial p}{\partial z} = -g \rho zp=gρ

上式被称为流体静力学方程。为什么左边需要写成偏微分形式呢?因为重力加速度 g g g 和空气密度 ρ \rho ρ 都随高度 z z z 变化而变化,即 g = g ( z ) , ρ = ρ ( z ) g = g(z),\rho = \rho (z) g=g(z)ρ=ρ(z)。另外, ∂ p ∂ z \frac{\partial p}{\partial z} zp 称为铅直气压梯度或单位高度气压差,它表示每升高 1 个单位高度所降低的气压值。

我们将气体状态方程 ρ = p R d T v \rho = \frac{p}{R_d T_v} ρ=RdTvp 代入上式可得:

∂ p ∂ z = − g p R d T v \frac{\partial p}{\partial z} = - \frac{gp}{R_d T_v} zp=RdTvgp

实际工作中还经常使用气压高度差(h),它表示在铅直气柱中气压每改变一个单位所对应的高度变化值。显然它是铅直气压梯度的倒数,即:

h = R d T g p h = \frac{R_d T}{gp} h=gpRdT

R d R_d Rd 的值代入,将平均重力加速度 g 0 = 9.81   m / s 2 g_0 = 9.81 \ \mathrm{m/s^2} g0=9.81 m/s2 代入到 g g g,并将 T T T 转换为摄氏温标 t t t 得:

h = 8000 p ( 1 + t / 273 ) ( m / h p a ) h = \frac{8000}{p} (1 + t / 273) (\mathrm{m/hpa}) h=p8000(1+t/273)(m/hpa)

由上式可知:

  • 在同一气压下:气柱的温度越高,空气密度越小,气压随高度递减得越缓慢,单位气压高度差越大;反之,气柱的温度越低,单位气压高度差越小。
  • 在同一气温下:气压值越大的地方,空气密度越大,气压随高度递减得越快,单位气压高度差越小;反之,气压值越大的地方,单位气压高度差越小。

4.2 重力位势

重力位势的定义:把 1kg 物质从海平面举到该点时克服地球重力场所做的功,用字母 Φ \Phi Φ 表示,单位为 J/kg。定义式为:

d Φ = g d z \mathrm{d} \Phi = g \mathrm{d} z dΦ=gdz

于是,在高度 z z z 处的重力位势可由下式给出:

Φ ( z ) = ∫ 0 z g d z \Phi (z) = \int_0^z g \mathrm{d} z Φ(z)=0zgdz

4.3 压高方程

通常,大气总处于静力平衡状态,当气层不太厚和要求精度不太高时,静力学方程可以用来粗略地估算气压与高度间的定量关系,或者用于将地面气压订正为海平面气压。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该式就难以直接运用,就需采用适合于较大范围气压随高度变化的关系式,即压高方程

流体静力学方程如下:

∂ p ∂ z = − g p R T \frac{\partial p}{\partial z} = - \frac{gp}{R T} zp=RTgp

对上式进行移项得:

d Φ = g d z = − R T d p p \mathrm{d} \Phi = g \mathrm{d} z = - R T \frac{\mathrm{d}p}{p} dΦ=gdz=RTpdp

两边积分得:

∫ Φ 1 Φ 2 d Φ = − ∫ p 1 p 2 R T d p p \int_{\Phi_1}^{\Phi_2} \mathrm{d} \Phi = - \int_{p_1}^{p_2} R T \frac{\mathrm{d}p}{p} Φ1Φ2dΦ=p1p2RTpdp

左边积分出的重力位势之差与高度 z z z 相关;右边需要注意,温度 T T T 和气体常量 R R R 是与 p p p 相关的量,所以不能直接积分出来,把上式写为:

Φ 2 ( z ) − Φ 1 ( z ) = − ∫ p 1 p 2 R T d p p \Phi_2(z) - \Phi_1(z) = - \int_{p_1}^{p_2} RT \frac{\mathrm{d}p}{p} Φ2(z)Φ1(z)=p1p2RTpdp

上式被称为压高方程,但是直接用该式计算是比较困难的,因为式子中右边的 T T T R R R 都随 p p p 而变化,积分很困难;而左边的重力位势又随重力加速度而变化。为了方便实际应用,需要对方程作某些特定假设。这个假设为:

  • 气体常数固定为干空气的气体常数 R d R_d Rd
  • 忽略重力加速度的变化,固定为平均重力加速度 g 0 = 9.81   m / s 2 g_0 = 9.81 \ \mathrm{m/s^2} g0=9.81 m/s2
  • 气温不随高度发生变化。

于是,左右两边同除以平均重力加速度 g 0 g_0 g0 可得:

Z 2 − Z 1 = R d T g 0 ∫ p 2 p 1 d p p = R d T g 0 ln ⁡ p 1 p 2 \begin{aligned} Z_2 - Z_1 &= \frac{R_d T}{g_0} \int_{p_2}^{p_1} \frac{\mathrm{d}p}{p} \\ &= \frac{R_d T}{g_0} \ln \frac{p_1}{p_2} \end{aligned} Z2Z1=g0RdTp2p1pdp=g0RdTlnp2p1

其中 Z 2 − Z 1 Z_2 - Z_1 Z2Z1 表示高度差。可以看出,等温大气中,气压随高度仍是按指数规律递减的。将 R d R_d Rd g 0 g_0 g0 代入上式,并将 T T T 转换为摄氏温标 t t t 得:

Z 2 − Z 1 = 18400 ⋅ ( 1 + t / 273 ) ln ⁡ p 1 p 2 Z_2 - Z_1 = 18400 \cdot (1 + t/273) \ln \frac{p_1}{p_2} Z2Z1=18400(1+t/273)lnp2p1

上式就是气象学上常用的等温大气压高方程,实际大气并非等温大气,所以应用上式计算实际大气的厚度和高度时,必须将大气划分为许多薄层,求出每个薄层的温度 t t t ,然后分别计算各薄层的厚度,最后把各薄层的厚度求和便是实际大气的厚度。

此外,上式中把重力加速度 g g g 当成常数,实际上 g g g 随纬度和高度而有变化,要求得精确的 Z Z Z 值,还必须对 g g g 作纬度和高度的订正。一般说,在大气低层 g g g 随高度的变化不大,但将此式应用到 100km 以上的高层大气时,就必须考虑 g g g 的变化。此外,上式是把大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值