Efficient PSD Constrained Asymmetric Metric Learning for Person Re-identification(MLAPG)

15 篇文章 0 订阅

1、介绍

      作者提出了一种考虑半正定限制条件和采用非对称样本加权策略的逻辑度量学习算法(MLAPG),可以通过APG优化算法有效的迭代求解。 MLAPG收敛快速,并且阶数较低。作者将其应用到行人重识别问题,在四个数据集上取得了很好的效果。

2、作者的方法

1)Cross-view Logistic Metric Learning 

首先是Cross-view training set的符号说明: 

然后作者指出距离度量的定义(马氏距离):

度量学习的任务就是学习具有判别能力的矩阵M,M是一个半正定矩阵,满足非负性和三角不等式(三角形两边之和大于第三边)。M应使得同类个体间的马氏距离小于不同类个体间的马氏距离。

为了寻找合适的M,作者提出了如下损失函数:

其中:   

这个损失函数能够提供一个soft margin来分开两类,对于分类问题很有效。

然后作者将(X,Z)所有的pair的损失函数加在一起:正对加在一起除以正对数目,负对加在一起除以负对数目,构成完整的损失函数:

其中 ,这就是作者所说的非对称样本加权策略,能够解决正对较少、负对较多导致正对不起作用,负对其主要作用的问题。

这样,作者就得到了优化的目标:

2)Accelerated Proximal Gradient Solution (APG)

a) Proximal Operator

(4)是一个非线性、光滑、凸的目标函数,有一个闭凸圆锥约束(M半正定),因此有唯一的最小值和最小值点。作者采用了广泛采用的APG方法来求最优解。

APG是一个一阶优化方法,以O(1/t^2)的时间复杂度求解最优值。针对求解路径{Mt},APG构造一个聚合序列{Vt}:即每次迭代中线性组合Mt-1和Mt-2来加速优化:

组合后优化求解F(V) ,F(V)的梯度为:

其中A和B为两个对角矩阵,主对角元为G(为gij构成的矩阵)的每行之和、每列之和。作者指出计算(6)最后一个等式比计算出所有的(xi-zj)效率更高。

这样,proximal operator可以通过在搜索点Vt线性化目标函数得到(类似在Vt点一阶泰勒展开的思想):

其中:

只要步长η选择的合适,就能保证

(如何保证η选择合适呢?通过在实验中用试探的方式:先设一个较大的初始值,判断P是否大于F,若不大于则除以一个大于1的常数γ,直到P大于F。作者还发现,若在当前迭代中η能保证P大于F,则以后这个关系会一直满足,无需再更改η) 

因此,优化(4)等价于优化: 

我们可以通过迭代的方式,不断优化(9)式来获得最优解。 

b) solution

作者证明,(9)式每次迭代的解Mt等于 :

即先利用Mt-1和Mt-2求得Vt,然后求得▼F(Vt),然后根据 求得Ct。对Ct进行奇异值分解(类似正交对角化,但是不同的概念,特征值大小对应重要性大小,可以舍弃不重要的特征值来近似原矩阵,完成降维),得到然后对的(对每个元素进行):,然后根据(10)求得Mt。继续进行迭代。

c) Dimension Reduction

因为Mt是Ct进行奇异值分解(SVD)的结果,所以Mt自然地秩会降低。因此可以把Mt进行分解:

其中 是移除对应中0对角元元素维度的矩阵。

这样,Pt (size: dxrt ,rt为中主对角元非0元素个数)就变成了一个投影矩阵,将d维空间的向量投影到rt维,完成了降维的功能。马氏距离也变成了欧式距离的形式,推倒如下:

注意,这里的降维是一直进行的,即把特征值为0对应的维度去掉,来加快SVD分解的速度。作者通过实验显示,在VIPeR数据集上M的秩在15个iterations后就从631降低到了315。(631为最初的人数,我认为Mo是协方差矩阵)

作者同时指出,去除Ct的小的特征值,Pt的投影维度能够进一步下降,但是会对结果造成一定的下降,后面设置了专门的实验讨论这一影响)

d) Convergence Analysis

作者证明,对于每次迭代求得的Mt,和全局最优解满足如下关系:

即和最优解的误差与1/t^2成正比,因此收敛速度为O(1/t^2)。在实际操作中,当即认为收敛。

3、实验结果

这里仅放了VIPeR数据集的结果,1)Table1表示子空间维度截取到100维各种算法的对比,对于其他不学习子空间的算法,先进行PCA降维到100维,对于MLAPG和XQDA算法,则将M截取到100维。进行公平的对比。2)Table2是VIPeR上state of the art结果的对比,对子空间维度大小不做限制。

最终的结论是MLAPG和XQDA算法的性能类似,远超其他算法。虽然XQDA算法比MLAPG算法更简单,但是实际上XQDA算法基于协方差估计,假设类内和类外偏差满足高斯分布,可能不适合复杂的数据分布。作者认为他们的方法更能适应真实、复杂的数据分布,在CUHK03上进行了实验,验证了他们的断论:MLAPG相比于XQDA学习复杂数据分布的能力更强。

4、创新点总结

the soft-margin loss function、半正定限制条件(PSD)、非对称样本加权(比PSD作用更大)

5、备注

MLAPG虽然每次迭代都需要进行SVD,但是整个训练时间仍然reasonable。考虑到SVD的算法复杂度是O(d^3),本文实验所有的feature dimension都是经过了一个full-energy PCA的631维。所以MLAPG直接用来解决高维数据问题是不现实的,像很多其他度量学习的方法一样工作在合适大小的PCA子空间上是一个比较好的选择。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值