SAM语义分割模型开源,AIGC时代,图像抠图工具都被大模型统一了?(下)

本文介绍了MobileSAM模型,它是SAM语义分割模型的轻量化版本,适用于CPU和移动端。文章详细阐述了MobileSAM的结构、部署过程,并与原始SAM模型进行了性能对比,展示了在保持良好分割效果的同时实现模型压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是千与千寻,很高兴今天和大家再一次分享我在ChatGPT上的学习经历!

这次是《SAM语义分割模型开源,AIGC时代,图像抠图工具都被大模型统一了?》系列的最终版本了。

在之前的两节中我们介绍了分割一切的 Segment Anything模型,以及分割视频的 Segment-and-Track Anything模型。只能说SAM分割模型进步的太快了!

先不告诉今天带来的项目名字,如果给你一个进行抠图的图像分割算法模型,你会怎么去优化呢?

1.优化模型的应用场景

首先最容易想到的就是由图像转视频,改变应用场景,那么也就是诞生了中篇的Segment-and-Track Anything模型。

从应用场景进行优化是一个优化的点,那么还有什么优化的创新点呢?

2.优化模型本身的结构

当然就是模型本身了!那么就是今天的项目,随着5G技术等的不断普及,我们对运算速度也有不低的要求,因此今天的项目就是对模型进行了压缩与轻量化处理。

一、MobileSAM模型的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千与编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值