tensorflow-v1.12的保存模型方式学习

tensorflow保存模型的几种方法

tensorflow保存模型的几种方法_zmlovelx(帅得不敢出门 程序员群31843264)-CSDN博客

tensorflow中的检查点checkpoint详解(二)——以tensorflow1.x 的模型保存与恢复为主

tensorflow中的检查点checkpoint详解(二)——以tensorflow1.x 的模型保存与恢复为主_MIss-Y的博客-CSDN博客tensorflow模型保存(三)——tensorflow1.x版本的savedmodel格式的模型保存与加载

tensorflow模型保存(三)——tensorflow1.x版本的savedmodel格式的模型保存与加载_MIss-Y的博客-CSDN博客

https://zhuanlan.zhihu.com/p/113734249

https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md

测试用例:

tensorflow/4_convolutions.ipynb at r1.12 · tensorflow/tensorflow · GitHub

例子中的数据

pickle_file = 'notMNIST.pickle'

从另外一个地方下载,是python2生成的

noob/notMNIST.pickle at master · StryxZilla/noob · GitHub

我修改了代码以适配python3

我环境是tensorflow2.3

训练,保存模型的代码:

from __future__ import print_function
 
import os
import cv2
import numpy as np
 
import tensorflow as tf
 
from six.moves import cPickle as pickle
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
 
    # 通过python3读取python2的pickle
    # https://stackoverflow.com/questions/50283123/python-3-pickle-load-from-python-2
    # https://docs.python.org/3/library/pickle.html#pickle.load
    # https://docs.python.org/3/library/pickle.html
    save = pickle.load(f, fix_imports=True, encoding="latin1")
    #save = pickle.load(f)
    
    train_dataset = save['train_dataset']
    train_labels = save['train_labels']
    valid_dataset = save['valid_dataset']
    valid_labels = save['valid_labels']
    test_dataset = save['test_dataset']
    test_labels = save['test_labels']
    del save  # hint to help gc free up memory
    print('Training set', train_dataset.shape, train_labels.shape)
    print('Validation set', valid_dataset.shape, valid_labels.shape)
    print('Test set', test_dataset.shape, test_labels.shape)
 
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
 
import numpy as np
 
def reformat(dataset, labels):
    dataset = dataset.reshape((-1, image_size, image_size, num_channels)).astype(np.float32)
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
    return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
 
def accuracy(predictions, labels):
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))/ predictions.shape[0])
 
 
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
 
 
graph = tf.Graph()
 
with graph.as_default():
 
    # Input data.
    # 对输入层起个好名字
    tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels), name='input_image')
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels), name='input_label')
    #tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
    #tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)
 
    # Variables.
    layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
    layer1_biases = tf.Variable(tf.zeros([depth]))
    layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
    layer3_weights = tf.Variable(tf.truncated_normal([image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
    layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
    # Model.
    def model(data):
        conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer1_biases)
        conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
        hidden = tf.nn.relu(conv + layer2_biases)
        shape = hidden.get_shape().as_list()
        reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
        hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
        return tf.matmul(hidden, layer4_weights) + layer4_biases
        # 对输出层起个好名字
        #return tf.matmul(hidden, layer4_weights, name='output') + layer4_biases
  
    # Training computation.
    logits = model(tf_train_dataset)
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
 
    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
 
    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
    test_prediction = tf.nn.softmax(model(tf_test_dataset))
 
 
num_steps = 301
with tf.Session(graph=graph) as session:
 
    '''
    模型保存方式1
    tf.train.Saver()
    https://blog.csdn.net/qq_27825451/article/details/105819752
    https://blog.csdn.net/qq_27825451/article/details/105505033
    https://blog.csdn.net/qq_27825451/article/details/105866464
    https://zhuanlan.zhihu.com/p/113734249
    https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/saved_model.md
    一定要在
    graph = tf.Graph()之后使用该方法,不然会抛出异常
    '''
 
    saver = tf.train.Saver()
    save_path_root = "/home/ninghua/深度学习/特征点检测/SuperPoint/superpoint/inference/result"
 
    tf.global_variables_initializer().run()
    print('Initialized')
    for step in range(num_steps):
 
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}

        m_input = [tf_train_dataset, tf_train_labels]
        m_output = logits
 
        _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)
 
        if (step % 50 == 0):
            print('Minibatch loss at step %d: %f' % (step, l))
            print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
            print('Validation accuracy: %.1f%%' % accuracy(valid_prediction.eval(), valid_labels))
        
        if step in [300, 600, 900]:
            #save_path = saver.save(sess=session, save_path=os.path.join(save_path_root, "ynhmodel.ckpt"), global_step=step)
 
            #网络只需要保存一个
            save_path = saver.save(sess=session, save_path=os.path.join(save_path_root, "ynhmodel.ckpt"), 
                                                global_step=step,
                                                write_meta_graph=False)
            print("model has saved, saved in path: {}".format(save_path))
 
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
 
    '''
    模型保存方式2
    '''
    tf.train.write_graph(graph_or_graph_def=session.graph_def, logdir=os.path.join(save_path_root, "ynh_write_graph"), 
                        name="mymodel.pb", as_text=False)
 
    '''
    模型保存方式3
    '''
    tf.saved_model.simple_save(session, os.path.join(save_path_root, "ynh_simple_save"),
                    inputs={"input_image:0": m_input[0], "input_label:0": m_input[1]}, outputs={"add_3:0": m_output})


    
    '''
    模型保存方式4 其实和3实现方式一模一样
    '''
    from tensorflow.python.saved_model import builder
    from tensorflow.python.framework import ops
    from tensorflow.python.saved_model import builder
    from tensorflow.python.saved_model import signature_constants
    from tensorflow.python.saved_model import signature_def_utils
    from tensorflow.python.saved_model import tag_constants
    from tensorflow.python.util.tf_export import tf_export

    signature_def_map = {
        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            signature_def_utils.predict_signature_def(inputs={"input_image:0": m_input[0], "input_label:0": m_input[1]}, 
                                                        outputs={"add_3:0": m_output})
    }
    builder = builder.SavedModelBuilder(os.path.join(save_path_root, "ynh_simple_save2"))
    builder.add_meta_graph_and_variables(
        session,
        tags=[tag_constants.SERVING],
        signature_def_map=signature_def_map,
        assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
        legacy_init_op=None,
        clear_devices=True)
    builder.save()

测试,打印网络参数,载入网络的代码:

from __future__ import print_function

import os
import cv2
import numpy as np

# 测试环境 tensorflow-2.3
# tensorflow 1.0
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

# tensorflow 2.0
#import tensorflow as tf


save_path_root = "/home/ninghua/code/deepglint/HSR/hsr_tools/tensorflow_test/result"
save_path = os.path.join(save_path_root, "ynhmodel.ckpt-300")
'''
001
# 查看模型中所有的Tensor的数据,这里的默认的all_tensor=True
'''
from tensorflow.python.tools import inspect_checkpoint as chkp
chkp.print_tensors_in_checkpoint_file(save_path, tensor_name='', all_tensors=True)
#print(chkp.print_tensors_in_checkpoint_file(save_path, tensor_name='', all_tensors=True))


'''
002
# 查看其中的某一个张量,此时的all_tensors=False
'''
# 获取最后保存的一个checkpoint,返回的是最后一个checkpoint的文件路径
model_file = tf.train.latest_checkpoint(save_path_root)
print(model_file)
print(chkp.print_tensors_in_checkpoint_file(model_file, tensor_name="Variable_7", all_tensors=False))




with tf.Session() as sess:
    #或者tf.global_variables_initializer().run()
    sess.run(tf.global_variables_initializer())
    # 通过meta文件,加载模型结构,返回的是一个saver对象
    saver = tf.train.import_meta_graph(os.path.join(save_path_root, "ynhmodel.ckpt-300.meta"))
    # 载入模型参数
    saver.restore(sess, os.path.join(save_path_root, "ynhmodel.ckpt-300"))
    # 获取当前图,为了后续训练时恢复变量 
    gragh = tf.get_default_graph()
    # 得到当前图中所有变量的名称
    tensor_name_list = [tensor.name for tensor in gragh.as_graph_def().node]
    for k in tensor_name_list:
        print(k)



# image_size = 28
# num_labels = 10
# num_channels = 1 # grayscale
# batch_size = 1
# patch_size = 5
# depth = 16
# num_hidden = 64
# graph = tf.Graph()
# with graph.as_default():

#     # Input data.
#     tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))

#     # Variables.
#     layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1))
#     layer1_biases = tf.Variable(tf.zeros([depth]))
#     layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1))
#     layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))
#     layer3_weights = tf.Variable(tf.truncated_normal([image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1))
#     layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
#     layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
#     layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
  
#     # Model.
#     def model(data):
#         conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
#         hidden = tf.nn.relu(conv + layer1_biases)
#         conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
#         hidden = tf.nn.relu(conv + layer2_biases)
#         shape = hidden.get_shape().as_list()
#         reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
#         hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
#         return tf.matmul(hidden, layer4_weights) + layer4_biases



from six.moves import cPickle as pickle
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:

    # 通过python3读取python2的pickle
    # https://stackoverflow.com/questions/50283123/python-3-pickle-load-from-python-2
    # https://docs.python.org/3/library/pickle.html#pickle.load
    # https://docs.python.org/3/library/pickle.html
    save = pickle.load(f, fix_imports=True, encoding="latin1")
    #save = pickle.load(f)
    
    train_dataset = save['train_dataset']
    train_labels = save['train_labels']
    valid_dataset = save['valid_dataset']
    valid_labels = save['valid_labels']
    test_dataset = save['test_dataset']
    test_labels = save['test_labels']
    del save  # hint to help gc free up memory
    print('Training set', train_dataset.shape, train_labels.shape)
    print('Validation set', valid_dataset.shape, valid_labels.shape)
    print('Test set', test_dataset.shape, test_labels.shape)

image_size = 28
num_labels = 10
num_channels = 1 # grayscale

import numpy as np

def reformat(dataset, labels):
    dataset = dataset.reshape((-1, image_size, image_size, num_channels)).astype(np.float32)
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
    return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)

with tf.Session() as sess:
    #或者tf.global_variables_initializer().run()
    sess.run(tf.global_variables_initializer())
     
    # 通过meta文件,加载模型结构,返回的是一个saver对象
    saver = tf.train.import_meta_graph(os.path.join(save_path_root, "ynhmodel.ckpt-300.meta"))
    # 载入模型参数
    saver.restore(sess, os.path.join(save_path_root, "ynhmodel.ckpt-300"))
        
    # 获取当前图,为了后续训练时恢复变量
    graph = tf.get_default_graph()
       
    # 获取模型的输入名称
    input_img_tensor = graph.get_tensor_by_name('model_input:0') #从模型中获取输入的那个节点
    # 获取模型的输出名称
    model_y = graph.get_tensor_by_name('Variable_7:0')
    
    batch_data = train_dataset[0, :, :, :]
    batch_labels = train_labels[0, :]

    # 测试模型
    result = sess.run(model_y, feed_dict={input_img_tensor: batch_data})  # 需要的就是模型预测值model_Y,这里存为result

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值