numpy中计算数组之间的欧式距离

本文详细介绍了如何使用Python的NumPy库计算两个数组的欧式距离,包括基本的向量差运算和利用`np.linalg.norm`函数处理不同范数的情况。同时涵盖了矩阵范数的概念及其在实际计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何利用python计算两个数组之间的距离呢?
我们可以有以下两种计算方式:

第一种方式

vec1和vec2是两个numpy向量,欧式距离计算如下:

import numpy as np
dist = np.sqrt(np.sum(np.square(vec1 - vec2)))

其中

np.sqrt():计算平方根
np.square():返回一个新数组,该数组的元素值为源数组元素的平方,源阵列保持不变。

第二种方式

dist = np.linalg.norm(vec1 - vec2)
np.linalg.norm(x,ord=None, axis=None, keepdims=False)
x:表示矩阵
ord:表示范数类型
axis:处理类型
	axis = 1:按行向量处理,求多个行向量的范数
	axis = 0:按列向量处理,求多个列向量的范数
	axis = None:表示矩阵范数
keepdims:是否保持矩阵的二维特性
	True表示保持矩阵的二维特性,False相反

关于范数

在这里插入图片描述

矩阵的范数:
ord = 1:列和的最大值
ord = 2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根
ord=∞:行和的最大值
ord=None:默认情况下是求整个矩阵元素平方和再开根号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sharon@zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值