- 博客(17)
- 收藏
- 关注
原创 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
最先进的目标检测网络依赖于区域提议算法来假设目标位置。像SPPnet[1]和Fast R-CNN[2]这样的进步已经减少了这些检测网络的运行时间,暴露了。在这项工作中,我们引入了一个,它与检测网络共享全图像卷积特征,从而实现了几乎免费的区域提议。RPN是一个全卷积网络,可以同时预测每个位置的对象界限和对象分数。RPN被训练为端到端,以生成高质量的区域提议,这些提议被Fast R-CNN用于检测。
2024-10-20 15:04:40 531
原创 Delving into the Devils of Bird’s-eye-view Perception: A Review, Evaluation and Recipe
基于单目摄像头的目标检测。基于单目摄像头的方法以RGB图像为输入,尝试预测每个对象的3D位置和类别。单目3D检测的主要挑战在于RGB图像缺乏深度信息,因此这些方法需要预测深度。由于从单个图像估计深度是一个不适定问题,通常基于单目摄像头的方法的性能不如基于激光雷达的方法。激光雷达检测和分割。激光雷达用一组3D空间中的点来描述周围环境,这些点捕捉了对象的几何信息。尽管缺乏颜色和纹理信息,感知范围有限,但由于深度先验,基于激光雷达的方法比基于摄像头的方法有大幅度的性能提升。传感器融合。
2024-10-17 14:44:51 537
原创 BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Trans
利用空间和时间信息,通过注意力机制灵活地。
2024-10-17 13:33:02 1253
原创 基于Transformer的单车轨迹预测
此外,为便于理解Transformer的建模,在开源的github中提供了由pytorch底层代码编写的Transformer实现。数据集采用HighD。为简化,仅使用数据集中一个csv文件中的车辆轨迹数据作为建模的数据。模型采用pytorch自带的Transformer模型。
2024-10-17 13:29:05 308
原创 DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous
将大型语言模型(LLMs)的语言选择转换为可操作的控制信号对车辆控制至关重要。为了实现这一点,我们将LLM的输出与流行的Apollo系统中行为规划模块的决策状态对齐。按照常见做法,我们将决策过程分为两类:速度决策和路径决策。具体来说,速度决策状态包括[KEEP, ACCELERATE, DECELERATE, STOP],而路径决策状态包括[FOLLOW, LEFT CHANGE, RIGHT CHANGE, LEFT BORROW, RIGHT BORROW]。
2024-10-17 10:51:17 742
原创 Exploring the Limitations of Behavior Cloning for Autonomous Driving
驾驶需要对复杂环境条件和代理行为做出反应。明确建模每个可能的场景是不现实的。相比之下,模仿学习理论上可以利用大量人类驾驶汽车的数据。行为克隆特别成功地用于学习简单的端到端视觉运动策略,但扩展到驾驶行为的全谱仍然是一个未解决的问题。在本文中,我们提出了一个新的基准,以实验研究行为克隆的可扩展性和局限性。我们展示了行为克隆在这些复杂场景中产生了最先进的策略,执行复杂的横向和纵向机动,即使在未见过的环境中,也没有被明确编程这样做。
2024-10-16 11:55:36 688
原创 HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction
准确预测周围交通智能体的未来运动对于自动驾驶车辆的安全至关重要。最近,矢量化方法因其能够捕捉交通场景中的复杂交互而成为运动预测领域的主流。然而,现有方法忽略了问题的对称性,并且面临昂贵的计算成本,挑战在于在不牺牲预测性能的情况下进行实时多智能体运动预测。为了应对这一挑战,我们提出了层次化矢量变换器(HiVT),用于快速准确的多智能体运动预测。通过将问题分解为局部上下文提取和全局交互建模,我们的方法可以有效地对场景中的大量智能体进行建模。
2024-10-11 18:22:30 852
原创 Query-Centric Trajectory Prediction
预测周围智能体的未来轨迹对于自动驾驶车辆的安全运行至关重要。本文提出了QCNet,这是一个推动轨迹预测边界的建模框架。首先,我们发现现有方法使用的以智能体为中心的建模方案需要在观察窗口向前滑动时重新归一化和重新编码输入,导致在线预测期间的冗余计算。为了克服这一限制并实现更快的推理,我们引入了一种以查询为中心的场景编码范式,它通过学习与全球时空坐标系无关的表示,使过去的计算得以重用。在所有目标智能体之间共享不变的场景特征,进一步允许多智能体轨迹解码的并行性。
2024-10-10 16:49:14 630
原创 SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
我们提出了语义区域自适应归一化(SEAN),这是一种简单但有效的构建块,用于在生成对抗网络(GANs)中根据描述所需输出图像中语义区域的分割掩模进行条件化。使用SEAN归一化,我们可以构建一个网络架构,可以单独控制每个语义区域的风格,例如,我们可以为每个区域指定一个风格参考图像。SEAN在编码、传输和合成风格方面比目前最好的方法更适合,并且在重建质量、多样性和视觉质量方面都有更好的表现。我们在多个数据集上评估SEAN,并报告比当前最先进的方法更好的定量指标(例如FID、PSNR)。
2024-10-09 23:52:40 867
原创 Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
自动驾驶中应该如何整合来自补充传感器的表示?基于几何的传感器融合在感知任务,如目标检测和运动预测方面显示出巨大前景。然而,对于实际驾驶任务来说,3D场景的全局上下文是关键的,例如,交通灯状态的变化可能会影响几何上远离该交通灯的车辆的行为。因此,几何本身可能不足以在端到端驾驶模型中有效地融合表示。在这项工作中,我们展示了基于现有传感器融合方法的模仿学习策略在面对高密度动态代理和复杂场景时表现不佳,这些场景需要全局上下文推理,例如处理来自多个方向的未受控交叉路口的交通。
2024-09-29 22:30:41 717
原创 2021-05-06
重规划中:轨迹缝合的逻辑重规划根据跟踪误差来判断怎样进行下一次规划的初始点的选取 误差指的是规划的轨迹和汽车实际位置的误差 设定一个阈值,判断是否以车辆当前位置(工程中是当前位置向前推演10ms)作为初始点,如果跟踪偏差大过阈值,则要以车辆当前位置(工程中是当前位置向前推演10ms)作为初始点,否则在前一个轨迹上找投影(我个人理解:在前一条规划轨迹上找到距离车辆当前位置最近的点,这样是保持轨迹的连续性,否则会抖动)...
2021-05-06 16:47:00 111
原创 2021-04-29
Lenovo EFI boot failed问题解决方法右侧novo键进入 bois模式F9恢复默认设置,F10保存退出,解决
2021-04-29 11:03:41 81
转载 2021-04-29
代码中说的配置文件是?贴切的类比配置文件有一个重要作用,就是很多需要经常变化的配置,是不能写死在程序里面的,因为写在代码中的配置,都被编译器编到了二进制文件中,程序运行中是无法更改的,所以对一些动态的配置,比如一个电商的程序,双十一打五折,过了今天就又要恢复原价的话,这个就适合在配置文件中有运营人员更改,程序是只认文件中写了什么,所以这也是改变运行时行为的一种方法。再想想我们通常用的软件吧,只要这个软件有「设置」这个选项,那么这里面所有的就都是对这个软件的配置,这个一般也存储在...
2021-04-29 10:18:04 89
原创 2021-04-23
Simulink的代码生成技术快速入门(2)https://www.bilibili.com/video/BV1PE411N72e?p=2&spm_id_from=pageDriver1、基础设置:(代码生成都要改成固定步长,没有截图) 改成该选项,否则会生成很冗长的代码(防止溢出和记录功能)2、Control B编译(grt编译的结果)Ert编译结果(gain=1被优化掉了,代码简洁多了)...
2021-04-23 12:46:34 147
原创 2021-04-22
Simulink代码生成技术快速入门(1):只是想养成做笔记的习惯,没有参考价值1、基础模块(图形化)2、信号属性Output data type: 该模块的输出信号数据类型Output minimum: 输出的最小值Output maximum: 输出的最大值(1word=2byte=16bit)3、求解器设置(采样时间根据自己的被控对象而定)注意:如果单片机的调度周期是100ms,如果做延迟功能(计...
2021-04-22 23:52:20 232
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人