施密特正交化(Gram–Schmidt process)

本文介绍在线性代数中如何使用Gram-Schmidt正交化方法从一个子空间的基构造出该子空间的正交基及标准正交基。通过逐步投影去除向量间的相关性,实现向量集的正交化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在线性代数中,如果内积空间上的一组向量能够张成一个子空间,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得出子空间的一个正交基,并可进一步求出对应的标准正交基。



先来看下 k = 2 时的情况,此时,v1=w1。因为我们想得到一个与v1相垂直的向量v2,于是可以让w2v1的方向上做投影。即,如下图所示。


此时,。当 k = 3 时,v1v2的找法就按照前面所示的过程来执行。如下图所示我们已经找到了两个垂直的基底v1v2,下面来设法找到v3。如下图所示,a是w3v1方向上的投影,b是w3v2方向上的投影,显然v3=w3-(a+b)=w3-a-b。


按照此过程继续下去,当k = n时,前n-1个彼此垂直的向量v1,...,vk-1已经构造完成,为了找到向量vk我们将wkv1,...,vk-1分别做投影,得到u1,...,uk-1,显然 vk = wk - u1 - ... - uk-1这也就是所谓的“施密特正交化”。


施密特正交化过程告诉我们,对于一个有限维的空间,我们一定可以找到一组彼此垂直的基底。当我们得到这样一组基底后,还可以对它们进行归一化,便可得到orthonormal的基底。也就是说对于一个有限维的空间,一定存在一组orthonormal的基底。更加正式地,我们可以用下面的定理来表述。



(本文完)

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值