机器学习中的核方法(Kernel Method)

说到机器学习中的核方法(Kernel Method),大部分人应该是在学习SVM的时候认识到它或者听说它。它的基本思想是说,普通的SVM分类超平面只能应对线性可分的情况,而对于线性不可分的情况我们则需要引入一个Kernel,这个Kernel可以把数据集从低维映射到高维,使得原来线性不可分的数据集变得线性可分。

 

关于在SVM中应用Kernel Trick的具体方法及示例,有兴趣的读者可以参考文献【1】《R语言实战:机器学习与数据分析》以了解更多。

 

 

一、基本概念

 

本节我们将抛开SVM,直面Kernel Method的本质。首先来看一个简单的例子,下面的左图中有些数据集,在原来的二维平面上它们是线性不可分的。如果要对它们进行分类,则需要用到一个椭圆曲线

然后为了设计了一个feature mapping,将原来的二维特征空间转换到新的三维特征空间中,具体来说我们所使用的mapping函数Φ如下:

  • 23
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
方法是一种在机器学习广泛应用的方法,特别是在支持向量机 (SVM) 。它的主要思想是将输入数据从原始空间转换到一个高维特征空间,使数据在该空间更容易分离。而这种转换通常是通过函数 (Kernel Function) 来实现的。函数可以看作是一种相似度函数,它通过计算两个数据点之间的相似程度来确定它们在高维特征空间的位置。常见的函数有线性、多项式、高斯等,不同的函数对应不同的特征空间和不同的分类效果。 方法的优点在于它可以处理非线性问题。在传统的线性分类器,如果数据不是线性可分的,那么分类器的性能通常会很差。但是方法通过将数据映射到高维特征空间,使得数据在该空间更容易分离,从而克服了线性分类器的缺点。此外,方法还具有尺度不变性、局部性和通用性等优点,可以应用于各种不同的机器学习任务和算法。 然而,方法的缺点在于它的计算复杂度较高,尤其是在高维特征空间,计算量会更大。此外,方法还需要选择合适的函数和参数,这通常需要进行交叉验证来确定,而且选择不当可能会导致过拟合或欠拟合等问题。 总的来说,方法是一种强大的机器学习工具,可以应用于各种不同类型的数据和不同的学习任务。虽然它有一些缺点,但是通过合理选择函数和参数,以及优化算法等手段,可以克服这些问题,实现高效而准确的学习和分类。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值