机器学习中的核方法(Kernel Method)

说到机器学习中的核方法(Kernel Method),大部分人应该是在学习SVM的时候认识到它或者听说它。它的基本思想是说,普通的SVM分类超平面只能应对线性可分的情况,而对于线性不可分的情况我们则需要引入一个Kernel,这个Kernel可以把数据集从低维映射到高维,使得原来线性不可分的数据集变得线性可分。

 

关于在SVM中应用Kernel Trick的具体方法及示例,有兴趣的读者可以参考文献【1】《R语言实战:机器学习与数据分析》以了解更多。

 

 

一、基本概念

 

本节我们将抛开SVM,直面Kernel Method的本质。首先来看一个简单的例子,下面的左图中有些数据集,在原来的二维平面上它们是线性不可分的。如果要对它们进行分类,则需要用到一个椭圆曲线

然后为了设计了一个feature mapping,将原来的二维特征空间转换到新的三维特征空间中,具体来说我们所使用的mapping函数Φ如下:

基于上面这种映射,我们就会得到下图右侧所示的新的三维特征空间,而在这个新的特征空间中,只要用一个分割超平面就可将原来的两组数据分开,换言之,原来线性不可分的数据现在已

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览