Pytorch 保存和提取训练好的神经网络

在pytorch中,保存神经网络用方法:

torch.save(net, 'net.pkl')

提取神经网络用方法:

torch.load('net.pkl')

保存神经网络有两种方式:

1、保存整个网络

torch.save(net, 'net.pkl')

这种方法能最大程度的保留网络的所有信息,缺点是读取网络时速度稍慢

2、保存网络的状态信息

torch.save(net.state_dict(), 'net_params.pkl')

这种方法只保留网络当前的状态信息,保存和读取速度快,保存的pkl文件体积小,缺点是在读取网络时需要自行先构建网络,否则无法还原信息

示例:

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())

x, y = Variable(x).cuda(), Variable(y).cuda()

# 保存网络
def save():
    net = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1),
    ).cuda()
    optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()
    for t in range(300):
        prediction = net(x)
        loss = loss_func(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    plt.figure(1, figsize=(10,3))
    plt.subplot(131)
    plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
    plt.plot(x.data.cpu().numpy(), prediction.data.cpu().numpy(), 'r-', lw=5)
    # 保存整个网络
    torch.save(net, 'net.pkl')
    # 保存网络当前的状态
    torch.save(net.state_dict(), 'net_params.pkl')

# 提取整个网络
def restore_net():
    net = torch.load('net.pkl').cuda()
    prediction = net(x)

    plt.figure(1, figsize=(10, 3))
    plt.subplot(132)
    plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
    plt.plot(x.data.cpu().numpy(), prediction.data.cpu().numpy(), 'r-', lw=5)

# 提取网络状态
def restore_params():
    net = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1),
    ).cuda()
    net.load_state_dict(torch.load('net_params.pkl'))
    prediction = net(x)

    plt.figure(1, figsize=(10, 3))
    plt.subplot(133)
    plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
    plt.plot(x.data.cpu().numpy(), prediction.data.cpu().numpy(), 'r-', lw=5)

save()
restore_net()
restore_params()

plt.show()

在这里插入图片描述图一为保存的神经网络,图二、三分别为用不同方法提取的神经网络,可以看到,两种提取方式的结果是一致的

  • 15
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
### 回答1: PyTorch 提供了许多预训练模型,如 AlexNet、VGG、ResNet、Inception 等,这些模型都在 ImageNet 数据集上进行了预训练。我们可以利用这些预训练模型来提取图像特征,以便用于图像分类、目标检测等任务。 以下是一个示例代码,利用 ResNet-50 模型来提取图像特征: ```python import torch import torchvision.models as models import torchvision.transforms as transforms # 加载预训练模型 resnet = models.resnet50(pretrained=True) # 定义数据预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载图像 img = Image.open('test.jpg') # 预处理图像 img_tensor = transform(img) # 增加一个维度,变成 4D 张量 img_tensor.unsqueeze_(0) # 特征提取 features = resnet(img_tensor) # 打印特征向量 print(features) ``` 其中,我们首先加载了 ResNet-50 模型,并定义了一个数据预处理方法 `transform`,然后加载了一张测试图片,并将其转化为 PyTorch Tensor 格式,并增加了一个维度,变成 4D 张量。最后,我们通过调用 `resnet` 模型来提取特征,得到一个 1x1000 的张量,我们可以将其用于图像分类等任务中。 ### 回答2: PyTorch是一个功能强大的机器学习库,其中包含许多用于预训练模型的特征提取工具。 预训练模型是在大规模数据集上进行训练保存的模型,可以用来处理各种任务。PyTorch提供了许多经过预训练的模型,如ResNet、Inception、VGG等,这些模型具有很强的特征提取能力。 使用PyTorch进行预训练模型的特征提取很简单。首先,我们需要下载和加载所需的预训练模型。PyTorch提供了一种方便的方式,可以直接从网上下载预训练模型并加载到我们的程序中。 加载预训练模型后,我们可以通过简单地将数据传递给该模型来提取特征。这通常涉及将输入数据通过模型的前向传播过程,并从中获取感兴趣的特定层或层的输出。 例如,如果我们想要提取图像的特征,我们可以使用ResNet模型。我们可以将图片传递给该模型,然后从所需的层中获取输出。这些特征可以用来训练其他模型,进行图像分类、目标检测等任务。 PyTorch的预训练模型特征提取功能很受欢迎,因为它不需要从头开始训练模型,而是利用了已经学习到的知识。这样可以节省时间和计算资源。此外,预训练模型通常在大规模数据集上进行了训练,因此其特征提取能力很强。 总而言之,PyTorch提供了简单且强大的预训练模型特征提取工具,可以用于各种任务。通过加载预训练模型并提取其特征,我们可以快速构建和训练其他模型,从而提高模型性能。 ### 回答3: PyTorch 提供了许多预训练模型,它们通过在大规模数据集上进行训练,能够有效捕捉到图像或文本等数据的特征。预训练模型特征提取是指利用这些模型,提取输入数据的特征表示。 在 PyTorch 中,我们可以使用 torchvision 包提供的预训练模型。这些模型包括常用的卷积神经网络(如 ResNet、VGG)和循环神经网络(如 LSTM、GRU)等,它们在 ImageNet 数据集上进行了大规模的训练。 为了使用预训练模型进行特征提取,我们可以简单地加载模型并提取输入数据的中间层输出。这些中间层的输出通常被认为是数据的有意义的特征表示。例如,对于图像分类任务,我们可以加载预训练的 ResNet 模型,并通过前向传播得到图像在最后一层卷积层的输出(也称为特征图)。这些特征图可以被视为图像的高级特征表示,可以用于后续的任务,如图像检索或分类等。 通过使用预训练模型进行特征提取,我们可以获得一些优势。首先,预训练模型经过大规模数据集的训练,能够捕捉到通用的特征表示。这样,我们无需从零开始训练模型,可以在少量的数据上进行微调或直接使用。其次,特征提取能够减少计算量和内存消耗,因为我们只需运行输入数据的前向传播,并截取中间层的输出,而无需通过后向传播进行反向更新。 总之,PyTorch 提供了方便的接口和预训练模型,使得特征提取变得简单且高效。通过使用预训练模型,我们可以获得数据的有意义的特征表示,并在后续的任务中得到更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值