随机变量的数学期望

离散型随机变量的数学期望

定义:
设离散型随机变量 X X X的分布律为: P { X = x k } = p k , k = 1 , 2 , . . . P\{X=x_k\}=p_k,k=1,2,... P{X=xk}=pkk=1,2,...若级数 ∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty}x_kp_k k=1xkpk绝对收敛,则称级数 ∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty}x_kp_k k=1xkpk X X X的数学期望(简称期望或均值)。记为 E ( X ) E(X) E(X)。即: E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk

连续型随机变量的数学期望

设连续型随机变量 X X X的密度函数为 f ( x ) f(x) f(x),若积分 ∫ − ∞ + ∞ x f ( x ) \int_{-\infty}^{+\infty}xf(x) +xf(x)绝对收敛,称该积分值为随机变量 X X X的数学期望,记为 E ( X ) E(X) E(X)。即: E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

随机变量函数的数学期望

X X X是随机变量, g ( x ) g(x) g(x)为实值函数,则 Y = g ( X ) Y=g(X) Y=g(X)也是随机变量。
有:
x x x为离散型、连续型随机变量:
E [ g ( x ) ] = ∑ i = 1 ∞ g ( x i ) p i E[g(x)]=\sum_{i=1}^{\infty}g(x_i)p_i E[g(x)]=i=1g(xi)pi E [ g ( x ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E[g(x)]=\int_{-\infty}^{+\infty}g(x)f(x)dx E[g(x)]=+g(x)f(x)dx x x x为二维离散型、连续型随机变量: E [ g ( x , y ) ] = ∑ i = 1 ∞ ∑ j = 1 ∞ g ( x i , y i ) p i j E[g(x,y)]=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}g(x_i,y_i)p_{ij} E[g(x,y)]=i=1j=1g(xi,yi)pij E [ g ( x , y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E[g(x,y)]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy E[g(x,y)]=++g(x,y)f(x,y)dxdy

数学期望的性质
  1. E ( c ) = c E(c)=c E(c)=c,其中 c c c为常数
  2. E ( c X ) = c E ( X ) E(cX)=cE(X) E(cX)=cE(X)
  3. E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
  4. X X X Y Y Y相互独立,则有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
常用分布的数学期望
分布函数分布律或概率密度函数数学期望
两点分布 X ∼ B ( 1 , p ) X\sim B(1,p) XB(1,p) P { X = x } = p x ( 1 − p ) 1 − x P\{X=x\}=p^x(1-p)^{1-x} P{X=x}=px(1p)1x ( x = 0 , 1 ) (x=0,1) (x=0,1) p p p
二项分布 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p) P { X = k } = C n k p k q n − k P\{X=k\}=C_{n}^{k}p^kq^{n-k} P{X=k}=Cnkpkqnk ( k = 0 , 1 , 2 , . . . , n ; q = 1 − p ) (k=0,1,2,...,n;q=1-p) (k=0,1,2,...,nq=1p) n p np np
泊松分布 X ∼ P ( λ ) / π ( λ ) X\sim P(\lambda)/\pi(\lambda) XP(λ)/π(λ) P { X = k } = λ k k ! e − λ P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda} P{X=k}=k!λkeλ ( k = 0 , 1 , 2 , . . . ; λ > 0 ) (k=0,1,2,...;\lambda > 0) (k=0,1,2,...λ>0) λ \lambda λ
均匀分布 X ∼ U [ a , b ] X\sim U[a,b] XU[a,b] f ( n ) = { 1 b − a , x ⩾ 0 0 , o t h e r w i s e f(n) =\begin{cases}\frac{1}{b-a}, x\geqslant 0 \\0,otherwise\end{cases} f(n)={ba1x00otherwise a + b 2 \frac{a+b}{2} 2a+b
指数分布 X ∼ E ( λ ) X\sim E(\lambda) XE(λ) f ( n ) = { λ e − λ x , x ⩾ 0 0 , o t h e r w i s e f(n) =\begin{cases}\lambda e^{-\lambda x}, x\geqslant 0 \\0,otherwise\end{cases} f(n)={λeλxx00otherwise ( λ > 0 ) (\lambda > 0) (λ>0) λ − 1 \lambda^{-1} λ1
正态分布 X ∼ N ( μ , ) X\sim N(\mu, ) XN(μ,) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi} \sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2 ( − ∞ &lt; x &lt; + ∞ ) (-\infty &lt; x &lt; +\infty) (<x<+) μ \mu μ
  • 25
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值