1 推理的通俗解释
推理是从前提推出结论的思维过程,前提是指已知的命题公式,结论是指从前提出发应用推理规则推出的命题公式,当推理正确且前提也正确时,结论一定正确。
2 构造证明法——证明推理正确的方法之一
构造证明法是按照给定的规则进行,其中有些规则建立在推理定律(即重言蕴含式)的基础之上。
推理定律:
推理定律 | 名称 |
---|---|
A ⇒ ( A ∨ B ) A\Rightarrow(A\lor B) A⇒(A∨B) | 附加 |
( A ∧ B ) ⇒ A (A\land B)\Rightarrow A (A∧B)⇒A | 化简 |
( ( A → B ) ∧ A ) ⇒ B ((A\to B)\land A)\Rightarrow B ((A→B)∧A)⇒B | 假言推理 |
( ( A → B ) ∧ ¬ B ) ⇒ ¬ A ((A\to B)\land \lnot B)\Rightarrow \lnot A ((A→B)∧¬B)⇒¬A | 拒取式 |
( ( A ∨ B ) ∧ ¬ A ) ⇒ B ((A\lor B)\land\lnot A)\Rightarrow B ((A∨B)∧¬A)⇒B | 析取三段论 |
( ( A → B ) ∧ ( B → C ) ) ⇒ ( A → C ) ((A\to B)\land (B\to C))\Rightarrow(A\to C) ((A→B)∧(B→C))⇒(A→C) | 假言三段论 |
( ( A ↔ B ) ∧ ( B ↔ C ) ) ⇒ ( A ↔ B ) ((A\leftrightarrow B)\land(B\leftrightarrow C))\Rightarrow(A\leftrightarrow B) ((A↔B)∧(B↔C))⇒(A↔B) | 等价三段论 |
( A → B ) ∧ ( C → D ) ∧ ( A ∨ C ) ⇒ ( B ∨ D ) (A\to B)\land(C\to D)\land(A\lor C)\Rightarrow(B\lor D) (A→B)∧(C→D)∧(A∨C)⇒(B∨D) | 构造性二难 |
( A → B ) ∧ ( ¬ A → B ) ⇒ B (A\to B)\land(\lnot A\to B)\Rightarrow B (A→B)∧(¬A→B)⇒B | 构造性二难的特殊形式 |
( A → B ) ∧ ( C → D ) ∧ ( ¬ B ∨ ¬ D ) ⇒ ( ¬ A ∨ ¬ C ) (A\to B)\land(C\to D)\land(\lnot B\lor\lnot D)\Rightarrow (\lnot A\lor\lnot C) (A→B)∧(C→D)∧(¬B∨¬D)⇒(¬A∨¬C) | 破坏性二难 |
根据公理和上述推理定律,可以得到下面的常用推理规则
名称 | 规则 |
---|---|
前提引入规则 | 前提可以在证明过程中任意引入 |
结论引入规则 | 已经证明的结论可以作为后续证明的前提 |
置换规则 | 在证明过程中可以应用16组重要等值式进行命题公式置换 |
假言推理规则 | A → B , A ⊨ B A\to B,A\vDash B A→B,A⊨B |
附加规则 | A ⊨ A ∨ B A\vDash A\lor B A⊨A∨B |
化简规则 | A ∧ B ⊨ A A\land B\vDash A A∧B⊨A |
拒取式规则 | A → B , ¬ B ⊨ ¬ A A\to B,\lnot B\vDash \lnot A A→B,¬B⊨¬A |
假言三段论规则 | A → B , B → C ⊨ A → C A\to B,B\to C\vDash A\to C A→B,B→C⊨A→C |
析取三段论规则 | A ∨ B , ¬ B ⊨ A A\lor B,\lnot B\vDash A A∨B,¬B⊨A |
构造性二难规则 | A → B , C → D , A ∨ C ⊨ B ∨ D A\to B,C\to D,A\lor C\vDash B\lor D A→B,C→D,A∨C⊨B∨D |
破坏性二难规则 | A → B , C → D , ¬ B ∨ ¬ D ⊨ ¬ A ∨ ¬ C A\to B,C\to D,\lnot B\lor\lnot D\vDash\lnot A\lor\lnot C A→B,C→D,¬B∨¬D⊨¬A∨¬C |
合取引入规则 | A , B ⊨ A ∧ B A,B\vDash A\land B A,B⊨A∧B |
其中, A 1 , A 2 , . . . , A k ⊨ B A_1,A_2,...,A_k \vDash B A1,A2,...,Ak⊨B表示 B B B是 A 1 , A 2 , . . . , A k A_1,A_2,...,A_k A1,A2,...,Ak的逻辑结论,若 A 1 , A 2 , . . . , A k A_1,A_2,...,A_k A1,A2,...,Ak已经得证,则可以引入 B B B。
构造证明法举例
构造下列推理的证明:
前提:
p
→
(
q
∨
r
)
,
s
→
¬
q
,
p
,
s
p\to(q\lor r), s\to \lnot q, p, s
p→(q∨r),s→¬q,p,s
结论:
r
r
r
证明:
①
p
→
(
q
∨
r
)
(前提引入)
②
p
(前提引入)
③
q
∨
r
(①②假言推理)
④
s
→
¬
q
(前提引入)
⑤
s
(前提引入)
⑥
¬
q
(④⑤假言推理)
⑦
r
(③⑥析取三段论,得证)
\begin{aligned} & ① p\to (q\lor r) & \text{(前提引入)}\\ & ②p& \text{(前提引入)}\\ & ③q\lor r & \text{(①②假言推理)}\\ & ④s\to \lnot q& \text{(前提引入)}\\ & ⑤s & \text{(前提引入)}\\ & ⑥\lnot q& \text{(④⑤假言推理)}\\ & ⑦r& \text{(③⑥析取三段论,得证)}\\ \end{aligned}
①p→(q∨r)②p③q∨r④s→¬q⑤s⑥¬q⑦r(前提引入)(前提引入)(①②假言推理)(前提引入)(前提引入)(④⑤假言推理)(③⑥析取三段论,得证)
使用构造证明法时有两种常用的技巧——附加前提证明法与归谬法
2.1 附加前提证明法
当结论为蕴含式时适用该技巧,蕴含式的前件即为附加的前提,这时可以将附加的前提作为前提使用。
附加前提证明法举例
构造下列推理的证明:
前提:
p
→
(
q
→
r
)
,
¬
s
∨
p
,
q
p\to(q\to r),\lnot s\lor p, q
p→(q→r),¬s∨p,q
结论:
s
→
r
s\to r
s→r
证明:
①
¬
s
∨
p
(前提引入)
②
s
(附加前提引入)
③
p
(①②析取三段论)
④
p
→
(
q
→
r
)
(前提引入)
⑤
q
→
r
(③④假言推理)
⑥
q
(前提引入)
⑦
r
(⑤⑥假言推理,得证)
\begin{aligned} & ① \lnot s\lor p & \text{(前提引入)}\\ & ② s & \text{(附加前提引入)}\\ & ③ p & \text{(①②析取三段论)}\\ & ④ p\to(q\to r) & \text{(前提引入)}\\ & ⑤ q\to r & \text{(③④假言推理)}\\ & ⑥ q & \text{(前提引入)}\\ & ⑦ r & \text{(⑤⑥假言推理,得证)}\\ \end{aligned}
①¬s∨p②s③p④p→(q→r)⑤q→r⑥q⑦r(前提引入)(附加前提引入)(①②析取三段论)(前提引入)(③④假言推理)(前提引入)(⑤⑥假言推理,得证)
2.2 归谬法
当结论简单时(通常为一个命题变项)适用该技巧,将结论的否定式引入证明,观察证明结果的真假,若证明结果为假,则说明前提与结论的否定式不相容,推理正确。
归谬法举例
构造下列推理的证明:
前提:
p
→
(
¬
(
r
∧
s
)
→
¬
q
)
,
p
,
¬
s
p\to(\lnot(r\land s)\to\lnot q),p,\lnot s
p→(¬(r∧s)→¬q),p,¬s
结论:
¬
q
\lnot q
¬q
证明:
①
p
→
(
¬
(
r
∧
s
)
→
¬
q
)
(前提引入)
②
p
(前提引入)
③
¬
(
r
∧
s
)
→
¬
q
(①②假言推理)
④
¬
(
¬
q
)
(结论的否定式引入)
⑤
q
(④置换)
⑥
r
∧
s
(③⑤拒取式)
⑦
¬
s
(前提引入)
⑧
s
(⑥简化)
⑨
s
∧
¬
s
(⑦⑧合取)
⑩
0
(结论为假,得证)
\begin{aligned} & ① p\to(\lnot(r\land s)\to\lnot q) & \text{(前提引入)}\\ & ② p & \text{(前提引入)}\\ & ③ \lnot(r\land s)\to\lnot q & \text{(①②假言推理)}\\ & ④ \lnot(\lnot q) & \text{(结论的否定式引入)}\\ & ⑤ q & \text{(④置换)}\\ & ⑥ r\land s & \text{(③⑤拒取式)}\\ & ⑦ \lnot s & \text{(前提引入)}\\ & ⑧ s & \text{(⑥简化)}\\ & ⑨ s\land\lnot s & \text{(⑦⑧合取)}\\ & ⑩ 0 & \text{(结论为假,得证)}\\ \end{aligned}
①p→(¬(r∧s)→¬q)②p③¬(r∧s)→¬q④¬(¬q)⑤q⑥r∧s⑦¬s⑧s⑨s∧¬s⑩0(前提引入)(前提引入)(①②假言推理)(结论的否定式引入)(④置换)(③⑤拒取式)(前提引入)(⑥简化)(⑦⑧合取)(结论为假,得证)