【ML】容量、过拟合和欠拟合

本文探讨了机器学习中模型的容量概念,以及过拟合和欠拟合的问题。容量关乎模型能学习到的复杂度,如果模型容量不足,可能导致欠拟合,即在测试集上的误差过高。相反,模型过度复杂,容易在训练集上表现优秀但在测试集(实际问题)上出现过拟合,泛化误差增大。识别并处理过拟合是提升模型性能的关键。
摘要由CSDN通过智能技术生成

Backto ML Index

在训练一个模型的时候,通常我们会先在一个训练集(training set) 上让模型学习,然后放到一个陌生的测试集(test set)上让模型考试。在 training set 上的误差称为训练误差(training error), test set 上的误差称为 泛化误差(generalization error/test error).

对于一个模型而言,我们最关注的是最终的 generalization error,这代表了模型解决实际问题的能力。

Created with Raphaël 2.2.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值