- 批量检测:处理data/train.txt中一列表的图像 , 并将保存检测的结果到 result.json文件 使用:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output -dont_show -out result.json < data/train.txt
- 批量检测:处理data/train.txt中一列表的图像 , 并将保存检测的结果到 result.txt 文件 使用:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -dont_show -ext_output < data/train.txt > result.txt
- 为了检查精确度 mAP@IoU=50使用:
darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
5.为了检查精确度 mAP@IoU=75使用:
darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75
- 为了计算anchors (k-means算法):
darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416
- 自增量训练 Pseudo-lableing - 为了检测一系列没有标签的图像 data/new_train.txt 并将yolo的检测结果以数据集的格式为每张图像保存下来,像标签 <image_name>.txt (使用这种方式,你就可以提升训练数据的数量)使用命令行:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt