YOLOv3 darknet Windows版 评价指标的命令行

  1. 批量检测:处理data/train.txt中一列表的图像 , 并将保存检测的结果到 result.json文件 使用:
 darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output -dont_show -out result.json < data/train.txt
  1. 批量检测:处理data/train.txt中一列表的图像 , 并将保存检测的结果到 result.txt 文件 使用:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -dont_show -ext_output < data/train.txt > result.txt
  1. 为了检查精确度 mAP@IoU=50使用:
darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights

5.为了检查精确度 mAP@IoU=75使用:

darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75
  1. 为了计算anchors (k-means算法):
darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416
  1. 自增量训练 Pseudo-lableing - 为了检测一系列没有标签的图像 data/new_train.txt 并将yolo的检测结果以数据集的格式为每张图像保存下来,像标签 <image_name>.txt (使用这种方式,你就可以提升训练数据的数量)使用命令行:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt
Windows上安装YOLOv3 (You Only Look Once) 和 Darknet需要几个步骤。YOLOv3是一个基于Darknet框架的目标检测算法,而PyCharm是一款流行的Python集成开发环境。以下是安装过程: 1. **安装Python**:首先确保已安装最新本的Python(建议使用Python 3.6及以上),你可以从Python官网下载并安装。 2. **安装Darknet依赖**:由于Darknet是用C++编写的,你需要C编译器如Microsoft Visual Studio(MSVC)或MinGW。访问https://github.com/AlexeyAB/darknet 下载源码,解压后按照说明配置编译环境。 3. **编译Darknet**:在命令行中进入Darknet目录,运行`./configure`,然后选择合适的编译选项(例如`make -j8` 或 `mingw32-make`),最后执行`make`来编译Darknet库和工具。 4. **安装PyTorch或TensorFlow**:YOLOv3可以与多种深度学习库结合,如PyTorch。如果你计划使用PyTorch,安装`torch`, `torchvision`, 和 `torch.utils.ffi`。如果你更倾向于TensorFlow,安装`tensorflow`和`opencv-python`。 5. **安装YOLOv3 for Python**:有两种方式,一是将Darknet的C语言API整合到Python项目中,这通常涉及到编译时链接;二是直接使用预训练模型,比如通过`yolov3.pytorch`这样的GitHub项目。你可以选择下载预训练权重并将其导入到PyCharm中。 6. **在PyCharm中设置项目**:创建一个新的Python项目,在项目结构中添加必要的文件夹,如包含模型的`models`目录,并配置Python解释器路径。 7. **编写Python脚本**:编写Python脚本来加载模型、处理图像以及进行预测。PyCharm会提供强大的调试和代码提示功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值