YOLO性能评价指标

在这里插入图片描述
在这里插入图片描述
假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。
TP:真实类别为飞机,预测结果为飞机。
FP:真实类别为大雁,预测结果为飞机。
FN:真实类别为飞机,预测结果为大雁。
TN:真实类别为大雁,预测结果为大雁。

准确率:Acc= (TP + TN)/ S 预测和groundtruth相同的个数占总个数的比例,即来衡量预测的正确率。
误检率:FPR= FP / Nf 在反例的标签中,把反例误检为正例的比例,即来衡量反例被误检的误差比率。(因为通常情况下把反例预测为正例带来的后果会比较严重,比如你将毒药预测为好的药物肯定会带来严重后果。)
1).平均每图误检数目:FPPI = FP/(image)
2).总误检数目:FP
召回率:Recall = TP/Nt 在正例标签中,正例预测正确的比例。度量分类器对某一类别预测结果的覆盖面,对所有类别求和取均值后可以得到整体覆盖面。
漏检率:MP = 1 – Recall (即来衡量又是多少被预测为大雁的飞机可以被漏检回来 。)
平均漏检率:随着阈值选择的不同,召回率会改变,因此漏检率也会随之改变
精确率:Prec = TP / Mt,度量分类器对某一类别预测结果的覆盖面,对所有类别求和取均值后可以得到整体覆盖面。
多目标检测:
平均精确率:AP:不同召回率下的平均 ,PR曲线下的面积,是precision对recall的积分。
-均匀地选择11个不同的召回率:Recall
-计算PR曲线下的面积
mAP:不同类别下的平均,即所有类别的平均精度求和除以所有类别,即数据集中所有类的平均精度的平均值。(数据集中的各类别数量一般是平均分布的)
mmAP:不同IoU’阈值下的平均
-较少使用,一般分别给出各个IoU阈值下的mAP
F值:F = 2 x precision x recall / (precision + recall)

参考:
模型评价——准确率、精确率与召回率与F值、宏平均与微平均、ROC曲线与AUC值

### YOLO 模型评估指标计算 #### 精度 (Precision) 精度是指在所有预测为目标的位置中,实际确实为目标的比例。其定义如下: \[ \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \] 其中 TP 表示真正类(True Positives),即正确识别的目标;FP 表示假正类(False Positives),即将背景误判为目标的情况。 #### 召回率 (Recall) 召回率表示的是所有真实目标中有多少比例被成功检测到。具体表达式为: \[ \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \] 这里 FN 是指假负类(False Negatives),也就是未能检出的真实目标数量。 #### 平均精度 (Average Precision, AP) 对于每一个类别而言,通过改变置信度阈值可以得到一系列不同的精度-召回曲线。AP 就是在这条曲线上求得的面积大小,反映了该分类器在整个操作范围内的表现情况[^1]。 ```python def compute_ap(recalls, precisions): """Compute the average precision from recall and precision curves.""" # Append sentinel values to beginning and end of recalls and precisions. recalls = np.concatenate(([0.], recalls, [1.])) precisions = np.concatenate(([0.], precisions, [0.])) # Ensure precision is non-decreasing by taking max over subsequent elements. for i in range(len(precisions) - 1, 0, -1): precisions[i - 1] = np.maximum(precisions[i - 1], precisions[i]) # Calculate area under PR curve using trapezoidal rule. indices = np.where(recalls[:-1] != recalls[1:])[0] ap = np.sum((recalls[indices + 1] - recalls[indices]) * precisions[indices + 1]) return ap ``` #### 均值平均精度 (Mean Average Precision, mAP) mAP 则是对各个类别的 AP 进行加权平均的结果,用于整体衡量多类别物体检测系统的性能优劣程度。当涉及到多个 IOU 阈值时,通常还会进一步计算不同 IOU 下的 mAP 来全面反映模型质量[^4]。 \[ \text{mAP}=\frac {1}{N}\sum _i^{N}\text{AP}_i \] 这里的 N 表示总共有多少种类别参与评测,而 \( \text{AP}_i \) 即第 i 类别的 AP 数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值