前言
本文主要讲解的是计算机视觉网络模型的性能评价指标,这是每一篇论文中都需要展示的内容。熟悉每一个评价指标也能够帮助我们在训练和改进模型过程中,更好的观察模型的变化效果。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
文章目录
- 1、真正例(True Positive,TP)、真负例(True Negative,TN)、假正例(False Positive,FP)、假负例(False Negative,FN)
- 2、混淆矩阵(Confusion Matrix)
- 3、查准率(Precision)
- 4、查全率(Recall)
- 5、F1 - Score
- 6、误检率(FPR)和漏检率(FNR)
- 7、P曲线、R曲线和PR曲线
- 8、交并比(Intersection over Union,IoU)
- 9、平均精度(Average Precision,AP)
- 10、平均精度均值(Mean Average Precision,mAP)
- 11、参数量(Number of Parameters)
- 12、计算量(Computational Complexity)
- 13、推理速度FPS(Frames Per Second)