目录
集合的表示
1.枚举法
A = {a, b, c, d}
B = {2, 4, 6, 8, 10,···}
2.叙述法
A = {x|x是英文字母中的元音字母}
B = {x|x ∈ Z, x < 10}
3.文氏图
一般使用平面上的方形或圆 形表示一个集合,而使用平面上的一个小圆点来表示集合的元素。
集合的基数
集合 A 中的元素个数称为集合的基数(base number),记为 |A|
A = {a, b, c}, |A| = 3
B = { a, {b, c} } , |B| = 2
特殊集合 集合的关系
1.空集
不含任何元素的集合叫做空集(empty set),记作 ∅.
空集可以符号化为 ∅ = {x|x≠x}.
空集是绝对唯一的
2.全集
针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E.
在文氏图一般使用方形表示全集。
eg:在立体几何中,全集是由空间的全体点组成的;
在我国的人口普查中,全集是由我国所有人组成的。
全集是相对唯一的
3.相等关系
两个集合 具有相同的元素, 此时称两个集合相等
eg:E = {x|(x − 1)(x − 2)(x − 3) = 0, x ∈ R}, F = {x|x ∈ Z +, x 2 < 12},
可见 E 和 F 具有相同的元素 {1, 2, 3}, 此时称两个集合相等
元素的基本特性
1.集合中的元素是无序的。 {1, 2, 3, 4} 与 {2, 3, 1, 4} 相同。
2.集合中的元素是不同的。 {1, 2, 2, 3, 4, 3, 4, 2} 与 {1, 2, 3, 4} 相同。
外延性定理
两个集合 A 和 B 相等,当且仅当它们的元素完全相同,记为 A = B,
否则 A 和 B不相等,记A ≠ B
证明集合相等
设 A, B 为任意两个集合,则 A = B ⇔ A ⊆ B 并且 B ⊆ A
4.包含关系
设 A,B 是任意两个集合,
如果 B 的每个元素都是 A 中的元素,则称 B 是 A 的子集,也称做B 被 A 包含或A 包含 B,记作B ⊆ A,否则记作B ⊈ A.
如果 B ⊆ A 并且 A ̸= B,则称 B 是 A 的真子集,也称做B 被 A 真包含或A 真包含 B,记 作B ⊂ A,否则记作B ̸⊂ A.
重要定理
”⊆” 关系的数学语言描述为:B ⊆ A ⇔ 对 ∀x, 如果 x ∈ B,则x∈A
由子集定义可有
1. ∅ ⊆ A
2 .A ⊆ A
5.幂集
设 A 为任意集合,把 A 的所有不同子集构成的集合叫做 A 的幂集(power set), 记作 P(A),
即, P(A) = {x|x ⊆ A}
eg:设 A = {a, b, c},B = { a, {b, c} } ,求他们的幂集 P(A) 和 P(B)。
解:P(A) = { ∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c} }
P(B) = { ∅, {a}, { {b, c} } , { a, {b, c} }}
x ∈ P(A) ⇔ x ⊆ A 即 幂集的元素⇔ 集合的子集
集合的运算
1.交运算
A ∪ B
2.并运算
A ∩ B
3.差运算
A − B
4.对称差集 即交集的补集
A ⊕ B = {x|(x ∈ A 并且 x ∉ B)或者(x ∉ A 并且 x ∈ B)}
5.补集
A = {x|x ∈/ A}
集合的运算定律
证明以上定律,可以用文氏图的方式,也可以用数学证明的方式。
进行数学证明,要用到证明集合相等的知识 传送门:3.相等关系
例:
可数集合与不可数集合
1.等势
设 A, B 为两个集合,若在 A, B 之间存在一种一一对应的关系:
Ψ : A → B
则称 A 与 B 是等势的 (equipotential),记作: A ∼ B
由等势定义可以看出,如果 A = B,那么 A ∼ B,反之不成立
2.可数集合
凡与自然数集合 N 等势的集合,称为可数集合(countable set),
该集合的基数记为ℵ0(读作阿列夫零)
eg:下列集合都是可数集合.
(1) O+ = {x|x ∈ N, x是正奇数};
(2) P = {x|x ∈ N, x是素数};
(3)有理数集合Q
可数集合的基数都是一样的,基数为ℵ0
3.不可数集合
开区间 (0, 1)称为不可数集合,
凡与开区间 (0, 1) 等势的集合,称为不可数集合,
该类集合的基数记为ℵ(读作阿列夫)
eg:闭区间【0,1】,实数集合R都是不可数集合。