需要剪枝的dfs,剪枝理论难以寻找。。。
这个题目用一般的搜索无法完成,因为题目要求在指定的时间内完成,所以只好一步一步来啦,用DFS解决
但是如果这样结果会超时,网上说是用一种奇偶剪枝的方法来间断搜索时间,下面是剪枝的简单理论,一看就懂:
把map看作
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
从 0->1 需要奇数步
从 0->0 需要偶数步
那么设所在位置 (x,y) 与 目标位置 (dx,dy)
如果abs(x-y)+abs(dx-dy)为偶数,则说明 abs(x-y) 和 abs(dx-dy)的奇偶性相同,需要走偶数步
如果abs(x-y)+abs(dx-dy)为奇数,那么说明 abs(x-y) 和 abs(dx-dy)的奇偶性不同,需要走奇数步
理解为 abs(si-sj)+abs(di-dj) 的奇偶性就确定了所需要的步数的奇偶性!!
而 (ti-setp)表示剩下还需要走的步数,由于题目要求要在 ti时 恰好到达,那么 (ti-step) 与 abs(x-y)+abs(dx-dy) 的奇偶性必须相同
因此 temp=ti-step-abs(dx-x)-abs(dy-y) 必然为偶数!
代码如下
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
int map[20][20],visit[20][20];
int t;
int n, m;
int sx, sy, c, b;
int dir[4][4] = {{0,1},{0,-1},{1,0},{-1,0}};
bool dfs(int x, int y, int ans)
{
if (ans>t)
return false;
if (x == c && y == b){
if (ans == t)
return true;
else
return false;
}
int x1, y1;
for (int i = 0; i < 4; i++){
x1 = x + dir[i][0];
y1 = y + dir[i][1];
if (x1 >= 0 && x1 < n && y1 >= 0 && y1 < m && map[x1][y1] && (!visit[x1][y1])){
visit[x1][y1] = 1;
if (dfs(x1,y1,ans+1))
return true;
visit[x1][y1] = 0;//不符合条件,重新设置没访问过的
}
}
return false;
}
int main()
{
char z;
int i, j;
while(cin>>n>>m>>t){
if (n+m+t == 0)
break;
memset(map,0,sizeof(map));
memset(visit,0,sizeof(visit));
for (i = 0; i < n; i++){
for (j = 0; j < m; j++){
cin>>z;
if (z == 'S'){
map[i][j] = 1;
visit[i][j] = 1;
sx = i;
sy = j;
}
if (z == '.')
map[i][j] = 1;
if (z == 'D'){
map[i][j] = 1;
c = i;
b = j;
}
}
}
if ((t- abs(sx-sy)- abs(c-b))%2 == 1){//奇偶剪枝
printf("NO\n");
continue;
}
if (dfs(sx,sy,0)){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return 0;
}