需要剪枝的dfs,剪枝理论难以寻找。。。
这个题目用一般的搜索无法完成,因为题目要求在指定的时间内完成,所以只好一步一步来啦,用DFS解决
但是如果这样结果会超时,网上说是用一种奇偶剪枝的方法来间断搜索时间,下面是剪枝的简单理论,一看就懂:
把map看作
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
从 0->1 需要奇数步
从 0->0 需要偶数步
那么设所在位置 (x,y) 与 目标位置 (dx,dy)
如果abs(x-y)+abs(dx-dy)为偶数,则说明 abs(x-y) 和 abs(dx-dy)的奇偶性相同,需要走偶数步
如果abs(x-y)+abs(dx-dy)为奇数,那么说明 abs(x-y) 和 abs(dx-dy)的奇偶性不同,需要走奇数步
理解为 abs(si-sj)+abs(di-dj) 的奇偶性就确定了所需要的步数的奇偶性!!
而 (ti-setp)表示剩下还需要走的步数,由于题目要求要在 ti时 恰好到达,那么 (ti-step) 与 abs(x-y)+abs(dx-dy) 的奇偶性必须相同
因此 temp=ti-step-abs(dx-x)-abs(dy-y) 必然为偶数!
代码如下
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include <iostream>