有限制的dfs

该博客探讨了一种受限的深度优先搜索(DFS)问题,由于时间限制,常规DFS无法满足需求。博主提到了使用奇偶剪枝策略来优化搜索过程,以避免超时。文章介绍了剪枝的简单理论,并附带了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要剪枝的dfs,剪枝理论难以寻找。。。

这个题目用一般的搜索无法完成,因为题目要求在指定的时间内完成,所以只好一步一步来啦,用DFS解决

但是如果这样结果会超时,网上说是用一种奇偶剪枝的方法来间断搜索时间,下面是剪枝的简单理论,一看就懂:

                      把map看作

                         0 1 0 1 0 1
                         1 0 1 0 1 0
                         0 1 0 1 0 1
                         1 0 1 0 1 0
                         0 1 0 1 0 1

                   从 0->1 需要奇数步

                   从 0->0 需要偶数步
                   那么设所在位置 (x,y) 与 目标位置 (dx,dy)

                   如果abs(x-y)+abs(dx-dy)为偶数,则说明 abs(x-y) 和 abs(dx-dy)的奇偶性相同,需要走偶数步

                   如果abs(x-y)+abs(dx-dy)为奇数,那么说明 abs(x-y) 和 abs(dx-dy)的奇偶性不同,需要走奇数步

                   理解为 abs(si-sj)+abs(di-dj) 的奇偶性就确定了所需要的步数的奇偶性!!

                   而 (ti-setp)表示剩下还需要走的步数,由于题目要求要在 ti时 恰好到达,那么  (ti-step) 与 abs(x-y)+abs(dx-dy) 的奇偶性必须相同

                   因此 temp=ti-step-abs(dx-x)-abs(dy-y) 必然为偶数!

代码如下

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
int map[20][20],visit[20][20];
int t;
int n, m;
 int sx, sy, c, b;
int dir[4][4] = {{0,1},{0,-1},{1,0},{-1,0}};
bool dfs(int x, int y, int ans)
{
        if (ans>t)
            return false;
        if (x == c && y == b){
            if (ans == t)
                return true;
            else
                return false;
        }
        int x1, y1;
        for (int i = 0; i < 4; i++){
            x1 = x + dir[i][0];
            y1 = y + dir[i][1];
            if (x1 >= 0 && x1 < n && y1 >= 0 && y1 < m && map[x1][y1] && (!visit[x1][y1])){
                    visit[x1][y1] = 1;
                if (dfs(x1,y1,ans+1))
                    return true;
                  visit[x1][y1] = 0;//不符合条件,重新设置没访问过的
            }
        }
        return false;
}

int main()
{
    char z;
    int i, j;
    while(cin>>n>>m>>t){
        if (n+m+t == 0)
            break;
        memset(map,0,sizeof(map));
        memset(visit,0,sizeof(visit));
        for (i = 0; i < n; i++){
            for (j = 0; j < m; j++){
                cin>>z;
                if (z == 'S'){
                    map[i][j] = 1;
                    visit[i][j] = 1;
                    sx = i;
                    sy = j;
                }
                if (z == '.')
                    map[i][j] = 1;
                if (z == 'D'){
                    map[i][j] = 1;
                    c = i;
                    b = j;
                }
            }
        }
        if ((t- abs(sx-sy)- abs(c-b))%2 == 1){//奇偶剪枝
            printf("NO\n");
            continue;
        }
       if (dfs(sx,sy,0)){
        printf("YES\n");
       }
       else{
        printf("NO\n");
       }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值