题目描述
某个充电站,可提供n个充电设备,每个充电设备均有对应的输出功率。任意个充电设备组合的输出功率总和,均构成功率集合P的1个元素。功率集合P的最优元素,表示最接近充电站最大输出功率p_max的元素。
输入描述
输入为3行:
- 第1行为充电设备个数n
- 第2行为每个充电设备的输出功率
- 第3行为充电站最大输出功率p_max
输出描述
功率集合P的最优元素
备注
- 充电设备个数 n > 0
- 最优元素必须小于或等于充电站最大输出功率p_max
用例
输入 | 4 50 20 20 60 90 |
输出 | 90 |
说明 | 当充电设备输出功率50、20、20组合时,其输出功率总和为90,最接近充电站最大充电输出功率,因此最优元素为90。 |
输入 | 2 50 40 30 |
输出 | 0 |
说明 | 所有充电设备的输出功率组合,均大于充电站最大充电输出功率30,此时最优元素值为0。 |
题目解析
本题可以看作是01背包问题。具体来说:
第3行中的充电站最大输出功率p_max可以看作是背包的最大承重;
第2行中每个充电设备的输出功率可以看作是不同物品的重量和价值,即重量=价值。
因此,现在需要求出在背包承重下能够装入的最大价值。
代码思路
这是一道01背包的题目。题目要求任意个充电设备组合的输出功率总和,均构成功率集合P的1个元素。因此,我们可以将问题转化为求解最接近充电站最大输出功率p_max的元素。
我们可以使用一个二维数组dp[i][j]表示前i个充