题目描述
在一棵树中,每个节点代表一个家庭成员,节点的数字表示其个人的财富值,一个节点及其直接相连的子节点被定义为一个小家庭。
现给你一棵树,请计算出最富裕的小家庭的财富和。
输入描述
第一行为一个数N,表示成员总数,成员编号1-N,1<=N<=1000
第二行为N个空格分隔的数,表示编号1-N的成员的财富值。0<=财富值<=1000000
接下来N-1行,每行两个空格分隔的整数(N1N2),表示N1是N2的父节点。
输出描述
最富裕的小家庭的财富和
用例
输入
4
100 200 300 500
1 2
1 3
2 4
输出
700
说明
成员1,2,3组成的小家庭财富值为600
成员2,4组成的小家庭财富值为700
解题思路
-
首先,读取成员总数N和每个成员的财富值。为了方便处理,我们将财富值存储在一个数组wealth中,下标从1开始。
-
初始化一个数组familyWealth,用于存储每个小家庭的财富和。初始时,每个小家庭的财富和等于对应成员的财富值。
-
初始化一个变量maxWealth,用于存储最大的财富和。初始值为0。
-
遍历每个父子关系,对于每个关系,执行以下操作:
a. 读取父子关系中的两个成员N1和N2。
b. 将N2的财富值累加到N1所在小家庭的财富和中,即更新familyWealth[N1]。
c. 更新最大的财富和maxWealth,使其始终为当前已遍历的小家庭中财富和的最大值。 -
遍历完所有父子关系后,maxWealth即为最富裕的小家庭的财富和。输出maxWealth作为结果。
这种解题思路的时间复杂度为O(N),因为我们只需要遍历一次父子关系,就可以计算出每个小家庭的财富和,并在过程中更新最大的财富和。这种方法相对高效。
C++
#include <iostream>