题目描述
攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。
地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。
例如:[0,1,2,4,3,1,0,0,1,2,3,1,2,1,0],代表如下图所示的地图,地图中有两个山脉位置分别为 1,2,3,4,5 和 8,9,10,11,12,13,最高峰高度分别为 4,3。最高峰位置分别为3,10。
一个山脉可能有多座山峰(高度大于相邻位置的高度,或在地图边界且高度大于相邻的高度)。
登山时会消耗登山者的体力(整数),
- 上山时,消耗相邻高度差两倍的体力
- 下山时,消耗相邻高度差一倍的体力
- 平地不消耗体力
- 登山者体力消耗到零时会有生命危险。
例如,上图所示的山峰:
- 从索引0,走到索引1,高度差为1,需要消耗 2 * 1 = 2 的体力,
- 从索引2,走到索引3,高度差为2,需要消耗 2 * 2 = 4 的体力。
- 从索引3,走到索引4,高度差为1,需要消耗 1 * 1 = 1 的体力。
攀登者想要评估一张地图内有多少座山峰可以进行攀登,且可以安全返回到地面,且无生命危险。
例如上图中的数组,有3个不同的山峰,登上位置在3的山可以从位置0或者位置6开始,从位置0登到山顶需要消耗体力 1 * 2 + 1 * 2 + 2 * 2 = 8,从山顶返回到地面0需要消耗体力 2 * 1 + 1 * 1 + 1 * 1 = 4 的体力,按照登山路线 0 → 3 → 0 需要消耗体力12。攀登者至少需要12以上的体力(大于12)才能安全返回。
输入描述
第一行输入为地图一维数组
第二行输入为攀登者的体力
输出描述
确保可以安全返回地面,且无生命危险的情况下,地图中有多少山峰可以攀登。
用例1
输入
0,1,4,3