题目描述
小z放假了,准备到RRR城市旅行,其中这个城市有N个旅游景点。小z时间有限,只能在三个旅行景点进行游玩。小明租了辆车,司机很善良,说咱不计路程,只要你一次性缴费足够,我就带你走遍RRR城。小z很开心,直接就把钱一次性缴足了。然而小z心机很重,他想选择的路程尽量长。
然而司机也很聪明,他每次从一个点走到另外一个点的时候都走最短路径。你能帮帮小z吗?
需要保证这三个旅行景点一个作为起点,一个作为中转点一个作为终点。(一共三个景点,并且需要保证这三个景点不能重复)。
输入描述
本题包含多组输入,第一行输入一个整数t,表示测试数据的组数
每组测试数据第一行输入两个数N,M表示RRR城一共有的旅游景点的数量,以及RRR城中有的路的数量。
接下来M行,每行三个数,a,b,c表示从a景点和b景点之间有一条长为c的路
t<=40
3<=N,M<=1000
1<=a,b<=N
1<=c<=100
输出描述:
每组数据包含一行,输出一个数,表示整条路程的路长。
如果找不到可行解,输出-1.
示例1
输入
4
7 7
1 2 100
2 3 100
1 4 4
4 5 6
5 6 10
1 6 4
6 7 8
7 3
1 2 1
1 3 1
1 3 2
7 3
1 2 1
3 4 1
5 6 1
8 9
1 2 1
2 3 1
3 4 1
4 1 1
4 5 1
5 6 1
6 7 1
7 8 1
8 5 1
输出
422
3
-1
9
题意:
在n个点的图中找三个点,使得这三点之间的最短距离最长。
解题思路:
首先我们需要用到最短路算法,先知道整个图的最短距离,但是我们不知道图的起点。那么我们可以遍历每个点作为起点,然后找出最短距离中两个最远的距离,这样的话,我们就能找到三个点之间的最短距离最长。这时候我们可以发现,这个起点其实就是三个点中的中间点。
所以具体做法就是我们枚举每个点作为中间点,然后去找两个最远的长度。然后不存在的话,那就是无解。
解题代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<map>
using namespace std;
#define ll long long
const int maxn=1e3+10;
const int inf=0x3f3f3f3f;
int head[maxn],tot,n,m,t,dis[maxn];
bool flag[maxn];
void init(){
memset(head,-1,sizeof(head));tot=0;
}
struct Node{
int v,w,nex;
}node[maxn*2];
void add(int u,int v,int w){
node[tot].v=v;node[tot].w=w;
node[tot].nex=head[u];
head[u]=tot++;
}
struct NA{
int x,w;
bool operator < (const NA &a) const{
return a.w<w;
}
};
bool cmp(int a,int b){
return a>b;
}
int dij(int s){
priority_queue<NA> qu;
for(int i=1;i<=n;i++){
dis[i]=inf;
flag[i]=0;
}
dis[s]=0;
NA q;
q.w=0;q.x=s;
qu.push(q);
while(!qu.empty()){
q=qu.top();qu.pop();
if(flag[q.x]) continue;
flag[q.x]=1;
for(int i=head[q.x];~i;i=node[i].nex){
int v=node[i].v;
int w=node[i].w;
if(dis[v]>dis[q.x]+w){
dis[v]=dis[q.x]+w;
if(!flag[v]){
NA p;
p.w=dis[v];
p.x=v;
qu.push(p);
}
}
}
}
sort(dis+1,dis+n+1,cmp);
for(int i=1;i<n-1;i++){
if(dis[i]!=inf&&dis[i+1]!=inf){
return dis[i]+dis[i+1];
}
}
return -1;
}
int main(){
int i,j,ans;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
init();
for(i=0;i<m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(v,u,w);
add(u,v,w);
}
ans=-1;
for(i=1;i<=n;i++){
ans=max(ans,dij(i));
}
printf("%d\n",ans);
}
return 0;
}