【多视图几何】对极几何与基础矩阵

本文未指明图片来源为 Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision 所做笔记。

第 9 章 《对极几何与基础矩阵》,Epipolar Geometry and the Fundamental Matrix

对极几何研究的对象是双视图几何,即两张相邻影像的位姿关系。

1. 对极几何基础概念

  1. 核点(epipole):基线(baseline)与成像平面的交点。同时极点也可以理解为相邻影像成像中心在本影像上的像,因为基线是两个相邻影像成像中心的连线。
  2. 核平面(epipolar plane):含有基线的平面,是一簇平面。可以看做是由基线与空间中任意一点构成的平面。
  3. 核线(epipolar line):核平面与成像平面的交线。可以看做是成像平面上的任意一点(非核点)与核点所定义的直线。

2. 基础矩阵 F

基础矩阵可以看做是将点投影(转换)为直线,将左影像上的一个点投影到右影像上形成一条核线。

2.1 几何推导基础矩阵

假设有一空间平面 \(\pi\),将 \(\pi\) 上的点 $ X $ 投影到左右影像上,可以得到这个三维点在两张影像上的像 $ x, x^{\prime} \(,将空间平面上所有的点都进行投影,能够得到左右影像上所有点的对应关系,这种对应关系可以使用单应矩阵(homography matrix, page 87)\) H_{\pi} $ 描述:

\[ x^{\prime} = H_{\pi}x \]

通过空间的一个平面建立两张影像中点的坐标对应关系

右影像上的核线 $ l^{\prime} $ 可以由两个点——右影像上的核点 $ e^{\prime} $ 与右影像上的任意一点 $ x^{\prime} $ ——确定:

\[ l^{\prime} = e^{\prime} \times x^{\prime} = [e^{\prime}]_{\times}x^{\prime}\]

将 $ x^{\prime} = H_{\pi}x $ 代入:

\[ l^{\prime} = [e^{\prime}]_{\times}H_{\pi}x = Fx \]

这样就得到了基础矩阵的定义:

\[ F = [e^{\prime}]_{\times}H_{\pi}\]

因为 $ x^{\prime} $ 在右核线 $ l^{\prime} $ 上,所以点积为 \(0\)

\[ {x^{\prime}}^{T}l^{\prime} = {x^{\prime}}^{T}Fx = 0 \]

2.2 代数推导基础矩阵

空间中三维点 $ X $ 反向投影到左影像上得到点 $ x $,这个过程可以用投影矩阵 $ PX = x $ 进行描述。

现在想办法将 $ X $ 用 $ x $ 表示,$ P $ 是一个 4x3 的矩阵,不可逆。使用 $ P $ 的伪逆:$ P^{+} = P^{T}{(PP^{T})}^{-1} $,得

\[ X = P^{+}x \]

对于左影像 $ X $ 是对应一条直线上的所有点,可以使用下面的方程表示这一条直线:

\[ X(\lambda) = P^{+}x + \lambda C \]

现在将这一条直线投影到右影像上,即可得到右影像的核线。投影的方式是在 $ X(\lambda) $ 上找到两个点,将这两点分别投影到右影像上,投影后的两个点确定右影像上的核线。

取 $ \lambda $ 为0,得到直线上的第一个点 $ P^{+}x $ ,取 \(\lambda\) 为 $ \infty $ 得到直线上的第二个点 \(C\) (即左影像的成像中心)。将这个两个点分别投影到右影像上,得到 $ P^{\prime}P^{+}x $ 与 \(P^{\prime}C\) 。$ P^{\prime}C = e^{\prime} $,左影像成像中心在右影像上的成像是核点。这两个点叉乘即可得到右影像上的核线:

\[ l^{\prime} = (P^{\prime}C)\times(P^{\prime}P^{+}x) = [e^{\prime}]_{\times}P^{\prime}P^{+}x = Fx\]

所以 $ F = [e^{\prime}]_{\times}P^{\prime}P^{+} $。

2.3 基础矩阵的性质

  1. 转置对称性:如果 $ F $ 是一对影像 $ (P, P^{\prime}) $ 的基础矩阵(即 $ x^{\prime}Fx = 0 $ ),反过来 $ (P^{\prime}, P) $ 的基础矩阵是 $ F^{T} $。证明很简单,直接对 $ x^{\prime}Fx = 0 $ 两侧分别转置,得到 $ x^{T}F^{T}{x^{\prime}} = 0 $ 。
  2. 核线:对于左影像上任意一点 $ x $ ,其在右影像上的核线为 $ l^{\prime} = Fx $ 。
  3. 核点:任何核线都会经过核点,所以有对于左影像上任意一点 $ x $ ,$ {e^{\prime}}^{T}l^{\prime} = {e^{\prime}}^{T}(Fx) = 0 $ ,于是有 $ {e^{\prime}}^{T}F = 0 $ 。同理有 $ Fe = 0 $ 。
  4. $ F $ 具有7自由度:一个 3x3 的单应矩阵,具有8个自由度,而 $ F $ 还满足 $ det F = 0 $,所以 $ F $ 具有7个自由度。
  5. $ F $ 是相关的:$ F $ 将左影像上的一点 $ x $ 投影到右影像上一条核线 $ l^{\prime} $,投影本质上是将 $ x $ 与左核点的连线 $ l $ 投影到右影像上的核线 \(l^{\prime}\) ,所以右影像上的一条核线 $ l^{\prime} $ 对应的是左影像上的一条核线 $ l $,这种点到线的投影不可逆。

2.4 核线的单应性

一张截图说明一切:

对应的核线可以看作是相互的投影

两张影像上核线的对应关系可以看作是中心投影,投影中心 $ p $ 位于核线上。

求左核线 $ l $ 对应的右核线 $ l^{\prime} $ 是现在左核线上找一点 $ x $ 使用基础矩阵通过 $ l^{\prime} = Fx $ 计算得到。 $ x $ 是任意的,只需要其在 $ l $ 上就行。可以通过做核线 $ l $ 与另一条不经过核点直线的交点计算得到 $ x $ 。假设另外一条直线为 $ k $,那么 $ l $ 与 $ k $ 的交点为 $ [k]_{\times}l $ ,所以右核线的计算方法如下:

\[ l^{\prime} = F[k]_{\times}l \]

直线 $ k $ 选择为 $ e $ 能够简化计算,直线 $ e $ 肯定不会通过核点 $ e $ ($ e^{T} e \neq 0$),所以对应核线的计算公式整理如下:

\[ l^{\prime} = F[e]_{\times}l \]

\[ l = F^{T}[e^{\prime}]_{\times}l^{\prime} \]

3. 从特殊运动中推导基础矩阵

3.1 仅有位移

在仅有位移的情况下,左右相机的内参也一致,左右相机的投影矩阵可以写成 $ P = K[I | 0], P^{\prime} = K[I | t] $, 由

\[ F=[e^{\prime}]_{\times}K^{\prime}RK^{-1} \]

可以得到

\[ F = [e^{\prime}]_{\times} \]

计算两张影像上影像坐标的对应关系。

$ x= PX = K[I | 0]X $ 左影像的投影关系,现在反求空间点 $ X $ 的坐标,$ (X, Y, Z)^{T} = ZK^{-1}x $,其中 $ Z $ 是标量,表示 $ X $ 的深度。将 $ X $ 的坐标计算结果带入右影像的投影关系 $ x^{\prime} = P^{\prime}X = K[I | t]X $,可以得到 $ x^{\prime} $ 与 $ x $ 的关系:

\[ x^{\prime} = x + Kt/Z \]

3.2 旋转与位移

当两张影像相对位姿含有旋转与位移时,先将左影像进行旋转,与右影像对齐(具有相同的姿态)。于是将问题简化为上述的位移问题。

将一张影像仅做旋转,相当于将影像进行一次平行投影(投影点在无穷远处),如下图:

先旋转后平移计算两张影像坐标对应关系

这个平行投影可以使用单应矩阵 $ H_{\infty} $ 表示,$ H_{\infty} $ 通过两张影像的投影矩阵计算得到。

\[ x = K^{\prime}[I | 0]X \]

\[ x^{\prime} = K[R | 0]X = KRK^{-1}K[I | 0]X = KRK^{-1}x \]

将上式的 $ x^{\prime} $ 替换 $ x^{\prime} = x + Kt/Z $ 中的 $ x $,即可得到最后的结果:

\[ x^{\prime} = KRK^{-1}x + Kt/Z \]

转载于:https://www.cnblogs.com/JingeTU/p/6390915.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
后台采用apache服务器下的cgi处理c语言做微信小程序后台逻辑的脚本映射。PC端的服务器和客户端都是基于c语言写的。采用mysql数据库进行用户数据和聊天记录的存储。.zip C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言中,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言中常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言中常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言中用于封装代码的单元,可以实现代码的复用和模块化。C语言中定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言中用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言中定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言中用于存储同类型数据的结构,可以通过索引访问和修改数组中的元素。字符串是C语言中用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言中用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言中通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值