本文未指明图片来源为 Multiple View Geometry in Computer Vision 。
读 Multiple View Geometry in Computer Vision 所做笔记。
第 9 章 《对极几何与基本矩阵》,Epipolar Geometry and the Fundamental Matrix。
对极几何研究的对象是双视图几何,即两张相邻影像的位姿关系。
1. 对极几何基本概念
- 核点(epipole):基线(baseline)与成像平面的交点。同时极点也可以理解为相邻影像成像中心在本影像上的像,因为基线是两个相邻影像成像中心的连线。
- 核平面(epipolar plane):含有基线的平面,是一簇平面。可以看做是由基线与空间中任意一点构成的平面。
- 核线(epipolar line):核平面与成像平面的交线。可以看做是成像平面上的任意一点(非核点)与核点所定义的直线。
2. 基本矩阵 F
基本矩阵可以看做是将点投影(转换)为直线,将左影像上的一个点投影到右影像上形成一条核线。
2.1 几何推导基本矩阵
假设有一空间平面 π ,将 π 上的点 X 投影到左右影像上,可以得到这个三维点在两张影像上的像 x,x′ ,将空间平面上所有的点都进行投影,能够得到左右影像上所有点的对应关系,这种对应关系可以使用单应矩阵(homography matrix, page 87) Hπ 描述:
x′=Hπx
右影像上的核线 l′ 可以由两个点——右影像上的核点 e′ 与右影像上的任意一点 x′ ——确定:
l′=e′×x′=[e′]×x′
将 x′=Hπx 代入:
l′=[e′]×Hπx=Fx
这样就得到了基本矩阵的定义:
F=[e′]×Hπ
因为 x′ 在右核线 l′ 上,所以点积为 0 :