【多视图几何】对极几何与基本矩阵

本文详细探讨了对极几何中的基本概念,包括核点、核平面和核线。重点介绍了基本矩阵的几何和代数推导,阐述了其性质,如转置对称性和与核线的关系。同时,从特殊运动如仅有位移和旋转与位移的情况出发,进一步推导了基础矩阵的计算方法。
摘要由CSDN通过智能技术生成

本文未指明图片来源为 Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision 所做笔记。

第 9 章 《对极几何与基本矩阵》,Epipolar Geometry and the Fundamental Matrix

对极几何研究的对象是双视图几何,即两张相邻影像的位姿关系。

1. 对极几何基本概念

  1. 核点(epipole):基线(baseline)与成像平面的交点。同时极点也可以理解为相邻影像成像中心在本影像上的像,因为基线是两个相邻影像成像中心的连线。
  2. 核平面(epipolar plane):含有基线的平面,是一簇平面。可以看做是由基线与空间中任意一点构成的平面。
  3. 核线(epipolar line):核平面与成像平面的交线。可以看做是成像平面上的任意一点(非核点)与核点所定义的直线。

2. 基本矩阵 F

基本矩阵可以看做是将点投影(转换)为直线,将左影像上的一个点投影到右影像上形成一条核线。

2.1 几何推导基本矩阵

假设有一空间平面 π ,将 π 上的点 X 投影到左右影像上,可以得到这个三维点在两张影像上的像 x,x ,将空间平面上所有的点都进行投影,能够得到左右影像上所有点的对应关系,这种对应关系可以使用单应矩阵(homography matrix, page 87) Hπ 描述:

x=Hπx

通过空间的一个平面建立两张影像中点的坐标对应关系

右影像上的核线 l 可以由两个点——右影像上的核点 e 与右影像上的任意一点 x ——确定:

l=e×x=[e]×x

x=Hπx 代入:

l=[e]×Hπx=Fx

这样就得到了基本矩阵的定义:

F=[e]×Hπ

因为 x 在右核线 l 上,所以点积为 0

xTl=xTFx=0

2.2 代数推导基本矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值