JungleTU
码龄12年
关注
提问 私信
  • 博客:23,441
    23,441
    总访问量
  • 11
    原创
  • 1,671,406
    排名
  • 28
    粉丝
  • 0
    铁粉

个人简介:一个学生。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2013-07-04
博客简介:

JungleTU的博客

博客描述:
一些学习过程中的笔记,欢迎交流
查看详细资料
个人成就
  • 获得20次点赞
  • 内容获得7次评论
  • 获得29次收藏
  • 博客总排名1,671,406名
创作历程
  • 9篇
    2017年
  • 2篇
    2016年
成就勋章
TA的专栏
  • 数学
    1篇
  • MVG
    6篇
  • 矩阵
    2篇
  • 算法
    2篇
  • SLAM
    1篇
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【SLAM】安装 g2o (记一次眼瞎)

2017年2月8日,那是一个阴天。为了完成高翔博士的《一起做RGB-D SLAM》教程,我在 Ubuntu 14.04 安装 g2o。遇到困难,怎奈我眼瞎,找错了方向,浪费时间,没有成功安装。
原创
发布博客 2017.02.09 ·
5717 阅读 ·
5 点赞 ·
2 评论 ·
10 收藏

【LeetCode】#112 #113 #437 Path Sum Series

首先要说明二叉树的问题就是用递归来做,基本没有其他方法,因为这数据结构基本只能用递归遍历,不要把事情想复杂了。
原创
发布博客 2017.02.07 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【LeetCode】#5 Longest Palindromic Substring

LeetCode 题目,原题链接 https://leetcode.com/problems/longest-palindromic-substring/。问题描述:找到字符串中最长回文子串。
原创
发布博客 2017.02.02 ·
264 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【多视图几何】TUM 课程 第6章 多视图重建

课程第6章介绍从多张影像重建同名点三维空间坐标的方法,详细讲解线性系统的秩与现实世界的对应关系。
原创
发布博客 2017.01.14 ·
1000 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【多视图几何】TUM 课程 第5章 双视图重建:线性方法

课程第5章介绍了如何从两张影像中重建同名点的三维空间坐标,其中涉及到本征矩阵、基础矩阵、八点法恢复、四点法恢复。
原创
发布博客 2017.01.13 ·
1514 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【多视图几何】TUM 课程 第4章 同名点匹配

课程第4章介绍了如何在两幅影像上匹配同名点,匹配同名点是计算影像相对姿态的第一步。用光流、特征点提取方法进行同名点匹配。
原创
发布博客 2017.01.12 ·
3173 阅读 ·
2 点赞 ·
1 评论 ·
7 收藏

【多视图几何】TUM 课程 第3章 透视投影

第3章介绍了透视投影、相机内参、畸变矫正、原像与余像的概念。
原创
发布博客 2017.01.11 ·
1610 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

【多视图几何】TUM 课程 第2章 刚体运动

课程第2章从李群与李代数的角度介绍三维空间的刚体运动。李群即常见的旋转矩阵、变换矩阵,李代数与李群对应,李代数 se(3)se(3) 是所有三维反对称阵的集合。
原创
发布博客 2017.01.10 ·
550 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【多视图几何】TUM 课程 第1章 数学基础:线性代数

在 YouTube 上找到了慕尼黑工业大学(Technische Universitaet München)计算机视觉组 Daniel Cremers 教授的 Multiple View Geometry 课程。容易理解,收获颇多,写下笔记以巩固所学。课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PL
原创
发布博客 2017.01.08 ·
2121 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

【矩阵】RQ/QR 分解

Multiple View Geometry in Computer Vision A.4.1.1 (page 579)将一个 3x3 矩阵 A A 进行 RQ 分解是将其分解成为一个上三角阵 R R 与一个正交阵(orthogonal matrix) Q Q 的乘积。所谓矩阵 Q Q 正交是指 QTQ=I Q^TQ=I , Q Q 可以看作是一个旋转矩阵。此旋转矩阵由三个子旋转矩阵点乘而
原创
发布博客 2016.12.30 ·
4334 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

【多视图几何】对极几何与基本矩阵

读 Multiple View Geometry in Computer Vision 所做笔记。 第 9 章 《对极几何与基本矩阵》,Epipolar Geometry and the Fundamental Matrix。对极几何研究的对象是双视图几何,即两张相邻影像的位姿关系。1. 对极几何基本概念核点(epipole):基线(baseline)与成像平面的交点。同时极点也可
原创
发布博客 2016.12.29 ·
2719 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏