【SVM】SVC的模型评估指标

混淆矩阵是监督学习中用于评估模型性能的工具,特别是在图像分类任务中,它展示真实值与预测值的对比。文章介绍了混淆矩阵的概念,指出在矩阵中,真实值总是位于预测值之前,并解释了如何解读矩阵中的各个元素。同时,文章也提及了ROC曲线,它是评估二分类模型性能的重要指标,通过绘制真正率与假正率的关系来展现模型的辨别能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混淆矩阵和ROC曲线

文章目录

混淆矩阵

在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类相比较计算的。
我们将少数类认为是正例,将多数类认为是负例。
在混淆矩阵中,永远都是真实值在前,预测值在后。

预测值
10
真实值 11110
00100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值