BP神经网络回归预测-多输出预测(同时预测多个输出)-Matlab代码实现

一、前言(代码获取:底部公众号或私信获取)

之前发布了BP神经网络多数入单输出预测,那个代码不能直接用于多输出。今天搞一下BP的多输入多输出预测,即同时预测多个输出Y,随意设置多少个输出Y都行。

在多输入多输出回归预测中,输出向量可以有多个分量,每个分量都对应一个需要预测的变量。同时,输出向量的维度需要与训练数据中的输出向量维度相同。

本文代码获取:点击跳转CSDN社区

二、结果展示

(1)根据经验公式,通过输入输出节点数量,求得最佳隐含层节点数量:

根据hiddennum=sqrt(m+n)+a,m为输入层节点数,n为输出层节点数,a取值[1,10]之间的整数,以此计算隐含层的节点数范围,再依次带入到BP中,计算每个隐含层神经元节点所对应的均方误差MSE,最终得出最佳隐含层节点。

(2)预测结果及误差,本例设置了3个Y:

(3)回归拟合图:

(4)误差直方图:

通过具有20个bin的误差直方图可以快速了解误差值的分布情况。如果一个bin的高度很高,表示该区间内的误差值出现的频率很高,说明模型在该区间内的表现不够好;反之,如果一个bin的高度很低,那么该区间内的误差值出现的频率很低,说明模型在该区间内的表现较好。

此外,如果整个直方图呈现出正态分布的形状,说明模型的误差分布情况比较均匀,误差值的集中程度也比较高。如果直方图呈现出偏态分布的形状,说明模型的误差分布情况比较不均匀,可能需要对模型进行进一步的优化。

(5)各项误差指标:

(6)其他:

更多代码获取:下方公众号

### 回答1: 在Matlab中,可以使用多输入单输出的模型来实现反向传播神经网络BP)模型。BP神经网络是一种常用的人工神经网络模型,用于解决分类和回归问题。 首先,需要设置BP神经网络的结构和参数。可以使用Matlab中的`newff`函数来创建一个新的前馈神经网络。通过设定输入数、隐藏数、输出数和每的神经元数量来定义网络结构。还需要选择激活函数和训练算法。例如,可以使用Sigmoid作为激活函数,使用Levenberg-Marquardt算法作为训练算法。 接下来,需要准备训练数据集。训练数据集应包含多个输入和一个对应的输出。可以使用Matlab的数据导入功能将数据从外部文件中加载到Matlab中。 然后,可以使用`train`函数来训练BP神经网络。需要将训练数据集作为输入,以及设置训练参数,如最大训练次数、训练误差阈值等。训练过程将自动调整网络的权重和偏差以最小化输出与目标输出之间的误差。 训练完成后,可以使用训练好的BP神经网络进行预测。通过提供一个新的输入样本,使用`sim`函数可以得到对应的输出。这可以用来解决分类问题,通过输出的激活函数来判断属于哪个类别;或者用来解决回归问题,根据输出的数值来预测连续值。 最后,可以使用评估指标(如均方误差或准确率)来评估BP神经网络模型的性能。这些指标可以帮助判断网络是否可以准确地预测未知数据的输出。 综上所述,Matlab中可以使用BP多输入单输出模型来解决分类和回归问题。通过设置网络结构和参数,准备训练数据,训练BP神经网络,使用训练好的网络进行预测,并使用评估指标评估性能,可以构建和应用BP神经网络模型。 ### 回答2: MATLAB中的BP(Back Propagation)多输入单输出模型是基于反向传播算法的一种神经网络模型。BP神经网络模型是一种前馈神经网络,其基本原理是通过不断地调整网络的权重和偏差以最小化输出误差,从而实现对输入数据的非线性建模和预测。 对于多输入单输出的情况,BP神经网络模型通过将多个输入特征组合成一个输入,并将其与中间的隐含进行连接,最后通过连接到输出,从而将多个输入映射到单个输出。 在MATLAB中,可以使用神经网络工具箱来构建和训练BP多输入单输出模型。首先,我们需要确定网络的拓扑结构,包括决定输入神经元的数量以及隐含输出的神经元数量。然后,可以使用"feedforwardnet"函数创建一个BP神经网络对象,并使用"train"函数进行网络的训练。 在训练过程中,MATLAB会根据输入样本和对应的目标输出样本来动态调整网络的权重和偏差。一般情况下,可以使用梯度下降法作为反向传播算法的优化方法,通过计算网络输出与目标输出的误差来更新网络的参数。 通过训练得到的BP多输入单输出模型,我们可以对新的输入数据进行预测并得到输出结果。这种模型在实际应用中具有广泛的用途,如模式识别、数据分类、回归分析等。 总而言之,MATLAB中的BP多输入单输出模型是一种使用反向传播算法构建的神经网络模型,可以通过训练来学习输入与输出之间的非线性关系,实现对输入数据的预测和建模。 ### 回答3: MATLAB中的BP多输入单输出模型是一种基于BP(反向传播)算法的神经网络模型,其目的是通过学习输入和输出之间的关系来进行预测、分类或回归等任务。 BP多输入单输出模型由输入、隐藏输出组成。输入接收各个输入变量的值,隐藏对输入进行处理并转化为更高级的特征表示,输出根据这些特征进行最终结果的预测。 在MATLAB中,可以使用“feedforwardnet”函数建立BP多输入单输出模型。首先,需要准备好输入数据和相应的输出数据,然后使用“newff”函数创建一个新的前馈神经网络对象。接着,使用“train”函数对神经网络进行训练,以使其学习输入和输出之间的关系。训练完成后,可以使用已训练的神经网络对新的输入数据进行预测。 具体而言,可以按照以下步骤进行: 1. 准备输入数据和输出数据。将输入数据和相应的输出数据按照一定的比例分为训练集和测试集。 2. 在MATLAB中创建一个新的前馈神经网络对象,可以指定隐藏节点的数量和激活函数等参数。 3. 使用“train”函数对神经网络进行训练。可以选择不同的训练算法和参数来完成训练过程。 4. 通过“sim”函数使用已训练的神经网络对测试集的输入数据进行预测。 5. 根据预测结果与实际输出之间的误差评估模型的性能,如计算均方根误差(RMSE)或准确率等指标。 6. 进行模型的优化和改进,如调整隐藏节点数量、学习率等参数,或进行集成学习等技术的应用。 总之,MATLAB中的BP多输入单输出模型是一种基于BP算法的神经网络模型,可以通过学习输入和输出之间的关系来进行预测、分类或回归等任务。使用MATLAB提供的相关函数和工具,可以快速搭建和训练这样的模型,并对其进行优化和评估。
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab神经网络深度学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值