灰狼优化算法GWO优化BP神经网络(GWO-BP)回归预测-MATLAB代码实现

一、灰狼优化算法GWO(代码获取:底部公众号)

灰狼优化算法(Grey Wolf Optimization, GWO)是一种基于自然界灰狼群体行为的启发式优化算法。它模拟了灰狼群体在求解问题时的协作和竞争行为,通过模拟灰狼的觅食行为来优化问题的解。算法的基本思想是将问题的解空间看作是灰狼的生态系统,灰狼的位置代表解的位置,灰狼的适应度代表解的优劣。算法通过模拟灰狼群体中的四种行为(搜寻、围攻、追逐和逃避)来更新灰狼的位置,以找到更好的解。以下是灰狼优化算法的基本步骤:

  1. 初始化灰狼群体:随机生成一定数量的灰狼,并为每个灰狼分配随机的初始位置。

  2. 计算适应度:根据问题的特定适应度函数,计算每个灰狼的适应度。

  3. 更新灰狼位置:根据每个灰狼的适应度和其他灰狼的位置,更新每个灰狼的位置。这一步模拟了搜寻、围攻、追逐和逃避行为。

  4. 更新最优解:更新全局最优解,记录适应度最好的灰狼的位置和适应度。

  5. 终止条件判断:检查是否满足终止条件,例如达到最大迭代次数或达到预设的适应度阈值。

  6. 返回最优解:返回全局最优解作为算法的结果。

灰狼优化算法的优点包括简单易实现、收敛速度较快、对参数的选择不敏感等。它在许多优化问题上都取得了良好的效果,如函数优化、机器学习模型参数优化等。需要注意的是,灰狼优化算法作为一种启发式算法,并不保证能够找到全局最优解,而是寻找到较好的解。在应用该算法时,合适的参数设置和问题特性分析对于取得好的结果至关重要。

二、GWO优化BP流程

GWO算法优化BP神经网络的流程:

  1. 初始化灰狼群体:随机生成一定数量的灰狼,并为每个灰狼分配随机的初始位置。每个灰狼的位置表示神经网络的权重和偏置。

  2. 计算适应度:使用BP算法计算每个灰狼的适应度。适应度可以使用神经网络的性能指标,如均方误差(MSE)或分类准确率。

  3. 更新灰狼位置:根据每个灰狼的适应度和其他灰狼的位置,更新每个灰狼的位置。这一步模拟了搜寻、围攻、追逐和逃避行为。更新位置的过程可以使用一些标准的优化算法操作,如计算新位置的平均值、最小值或随机位置。

  4. 更新最优解:更新全局最优解,记录适应度最好的灰狼的位置和适应度。这个位置对应于神经网络的最佳权重和偏置。

  5. 执行BP算法:使用更新后的权重和偏置进行一次BP迭代,即前向传播和反向传播过程。根据训练数据计算梯度,并使用梯度下降算法更新权重和偏置。

  6. 终止条件判断:检查是否满足终止条件,例如达到最大迭代次数或达到预设的适应度阈值。如果满足条件,转到步骤 7,否则返回步骤 3。

  7. 返回最优解:返回全局最优解作为优化后的神经网络模型。

使用灰狼优化算法优化BP流程可能需要进行一些参数调整和实验,以找到最佳的算法配置。这包括灰狼数量、最大迭代次数、适应度函数选择等。同时,还应注意防止算法过拟合和选择合适的停止准则。

三、部分代码

SearchAgents_no=20; % 狼群数量
Max_iteration=40; % 最大迭代次数
dim=121; % 此例需要优化两个参数c和g
lb=-10*ones(1,121); % 参数取值下界
ub=10*ones(1,121); % 参数取值上界
% 节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);       
bound=[-3*ones(numsum,1) 3*ones(numsum,1)];    %数据范围
Alpha_pos=zeros(1,dim); % 初始化Alpha狼的位置
Alpha_score=inf; % 初始化Alpha狼的目标函数值,
Beta_pos=zeros(1,dim); % 初始化Beta狼的位置
Beta_score=inf; % 初始化Beta狼的目标函数值,
Delta_pos=zeros(1,dim); % 初始化Delta狼的位置
Delta_score=inf; % 初始化Delta狼的目标函数值,
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iteration);
l=0; % 循环计数器
h0=waitbar(0,'GWO优化BP即将完成,请等待...');
while l<Max_iteration  % 对迭代次数循环
    for i=1:size(Positions,1)  % 遍历每个狼
       % 若搜索位置超过了搜索空间,需要重新回到搜索空间
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        % 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界;
        % 若超出最小值,最回答最小值边界
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % ~表示取反
        x= Positions(i,:);
        % 计算适应度函数值
        cmd = ['-w1 ',num2str(Positions(i,1)),' -B1 ',num2str(Positions(i,2)),' -w2 ',num2str(Positions(i,3)),' -B2 ',num2str(Positions(i,2))];
        fitness=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
        if fitness<Alpha_score % 如果目标函数值小于Alpha狼的目标函数值
            Alpha_score=fitness; % 则将Alpha狼的目标函数值更新为最优目标函数值
            Alpha_pos=Positions(i,:); % 同时将Alpha狼的位置更新为最优位置
        end        
        if fitness>Alpha_score && fitness<Beta_score % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间
            Beta_score=fitness; % 则将Beta狼的目标函数值更新为最优目标函数值
            Beta_pos=Positions(i,:); % 同时更新Beta狼的位置
        end        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score  % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间
            Delta_score=fitness; % 则将Delta狼的目标函数值更新为最优目标函数值
            Delta_pos=Positions(i,:); % 同时更新Delta狼的位置
        end
    end   
    a=2-l*((2)/Max_iteration); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0
    for i=1:size(Positions,1) % 遍历每个狼
        for j=1:size(Positions,2) % 遍历每个维度            
            % 包围猎物,位置更新           
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            A1=2*a*r1-a; % 计算系数A,Equation (3.3)
            C1=2*r2; % 计算系数C,Equation (3.4)  
            % Alpha狼位置更新
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1           
            r1=rand();
            r2=rand(); 
            A2=2*a*r1-a; % 计算系数A,Equation (3.3)
            C2=2*r2; % 计算系数C,Equation (3.4) 
            % Beta狼位置更新
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            r1=rand();
            r2=rand(); 
            A3=2*a*r1-a; % 计算系数A,Equation (3.3)
            C3=2*r2; % 计算系数C,Equation (3.4)
            % Delta狼位置更新
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3              
            % 位置更新
            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7) 
        end
    end
    l=l+1;    
    Convergence_curve(l)=Alpha_score;
    waitbar(Max_iteration,h0)
end
close(h0)

四、仿真结果

(1)根据经验公式,通过输入输出节点数量,求得最佳隐含层节点数量:

 (2)BP和GWO-BP的预测对比图和误差图

(3)BP和GWO-BP的各项误差指标 

 (4)灰狼优化算法GWO适应度进化曲线

 (5)BP和GWO-BP模型的回归图

  (6)BP和GWO-BP模型的误差直方图

 五、BP算法优化

BP算法优化
遗传算法  GA-BP灰狼算法  GWO-BP
鲸鱼算法  WOA-BP粒子群算法  PSO-BP
麻雀算法  SSA-BP布谷鸟算法  CS-BP

六、结语

需要注意的是,灰狼优化算法GWO和BP神经网络都是基于随机性的算法,因此同一组参数的优化结果可能会有所不同,需要进行多次重复实验来验证模型的鲁棒性和可靠性。

  • 4
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
以下是一个基于BP神经网络灰狼优化算法MATLAB代码示例: ```matlab % 数据准备 % 假设你的输入数据为inputData,输出数据为outputData inputData = [0, 0; 0, 1; 1, 0; 1, 1]; outputData = [0; 1; 1; 0]; % 神经网络参数设置 inputSize = size(inputData, 2); hiddenSize = 4; outputSize = size(outputData, 2); % 神经网络初始化 net = feedforwardnet(hiddenSize); net = configure(net, inputData', outputData'); net.layers{1}.transferFcn = 'logsig'; net.layers{2}.transferFcn = 'logsig'; net.trainFcn = 'traingd'; % 灰狼优化算法参数设置 maxIter = 100; numWolves = 5; lb = -1; % 参数下界 ub = 1; % 参数上界 dim = (inputSize+1)*hiddenSize + (hiddenSize+1)*outputSize; % 参数维度 % 初始化灰狼群体 wolves = lb + (ub-lb)*rand(numWolves, dim); % 开始优化 for iter = 1:maxIter % 更新每个灰狼的适应度值 fitness = zeros(numWolves, 1); for i = 1:numWolves weights = reshape(wolves(i,:), [], dim); net = setwb(net, weights'); outputs = net(inputData')'; fitness(i) = sum((outputs - outputData).^2); end % 找到最优灰狼 [minFitness, minIndex] = min(fitness); alpha = wolves(minIndex,:); % 更新每个灰狼的位置 for i = 1:numWolves if i ~= minIndex a = 2 - iter*((2)/maxIter); % 线性递减的系数a r1 = rand(); % 随机数r1 r2 = rand(); % 随机数r2 A1 = 2*a*r1 - a; % 计算参数A1 C1 = 2*r2; % 计算参数C1 D_alpha = abs(C1*alpha - wolves(i,:)); % 计算D_alpha X1 = alpha - A1*D_alpha; % 计算X1 r1 = rand(); % 随机数r1 r2 = rand(); % 随机数r2 A2 = 2*a*r1 - a; % 计算参数A2 C2 = 2*r2; % 计算参数C2 D_beta = abs(C2*wolves(i,:) - wolves(i,:)); % 计算D_beta X2 = wolves(i,:) - A2*D_beta; % 计算X2 wolves(i,:) = (X1 + X2) / 2; % 更新灰狼位置 end end % 输出当前最优适应度值 disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(minFitness)]); end % 最优灰狼对应的权重 bestWeights = reshape(wolves(minIndex,:), [], dim); net = setwb(net, bestWeights'); ``` 这段代码首先进行了神经网络的初始化,然后使用灰狼优化算法神经网络的权重进行优化。在每次迭代中,根据灰狼的位置更新每个灰狼的适应度值,并找到最优灰狼。然后根据最优灰狼的位置更新其他灰狼的位置。最后输出最优适应度值和最优权重。 请注意,这只是一个基本的示例代码,实际应用中可能需要根据具体问题进行修改和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab神经网络深度学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值