实验技术与数据处理公式大赏

误差的基本性质与处理

  • 误差可分为随机误差系统误差粗大误差三类。
  • 首先计算算术平均值 x ˉ = 1 n ∑ x i \bar x=\frac1n∑x_i xˉ=n1xi和残差 v i = x i − x ˉ v_i=x_i-\bar x vi=xixˉ。若在求平均数时选取了参考值x0,则 x ˉ = x 0 + 1 n ∑ ( x i − x 0 ) \bar x=x_0+\frac1n∑(x_i-x_0) xˉ=x0+n1(xix0)
  • 校核算术平均值和残差:设A为求得的 x ˉ \bar x xˉ的末位数的一个单位,当n为奇(偶)数时应有 ∣ ∑ v i ∣ ≤ n − 1 2 A |∑v_i|≤\frac{n-1}2A vi2n1A ∣ ∑ v i ∣ ≤ n 2 A |∑v_i|≤\frac n2A vi2nA),否则计算有误,应重新计算和校核
  • 判断系统误差:设标准差 σ = ∑ v i 2 n − 1 σ=\sqrt{\frac{∑v_i^2}{n-1}} σ=n1vi2 ,Peters标准差 σ ′ = 5 4 ⋅ ∑ ∣ v i ∣ n ( n − 1 ) σ'=\frac54·\frac{∑|v_i|}{\sqrt {n(n-1)}} σ=45n(n1) vi,则算术平均值的标准差 σ x ˉ = σ n σ_{\bar x}=\fracσ{\sqrt n} σxˉ=n σ,平均误差 T ≈ 4 5 σ x ˉ T≈\frac45σ_{\bar x} T54σxˉ,或然误差 R ≈ 2 3 σ x ˉ R≈\frac23σ_{\bar x} R32σxˉ。若 ∣ σ ′ σ − 1 ∣ < 2 n − 1 |\frac{σ'}σ-1|<\frac2{\sqrt{n-1}} σσ1∣<n1 2,则不存在系统误差,否则:
    • ∑ 1 ∼ m v i − ∑ m ∼ n v j ∑_{1∼m}v_i-∑_{m∼n}v_j 1mvimnvj显然不为0,则存在线性系统误差。
    • ∣ v 1 v 2 + v 2 v 3 + ⋯ + v n − 1 v n ∣ > n − 1 σ 2 |v_1v_2+v_2v_3+⋯+v_{n-1}v_n|>\sqrt{n-1}σ^2 v1v2+v2v3++vn1vn>n1 σ2,则存在周期性系统误差。
  • 判断粗大误差:设显著性水平为α。n较大时采用3σ准则,n较小时采用格罗布斯准则:将xi从小到大排列,若x1(xn)可疑,则令 g 1 = x ˉ − x 1 σ g_1=\frac{\bar x-x_1}σ g1=σxˉx1 g n = x ˉ n − x σ g_n=\frac{\bar x_n-x}σ gn=σxˉnx)。查表得g0(n,α),若gi≥g0(n,α),则应剔除xi,然后重算 x ˉ \bar x xˉ σ σ σ并循环此步。
  • 求算术平均值的极限误差:n较多时,直接取 δ lim ⁡ = 3 σ x ˉ δ_{\lim}=3σ_{\bar x} δlim=3σxˉ;n较少时,自由度为ν=n-1,查t分布表得tα=t(n-1,α),于是极限误差 δ lim ⁡ ( x ˉ ) = t α σ x ˉ δ_{\lim}(\bar x)=t_ασ_{\bar x} δlim(xˉ)=tασxˉ。最终的测量结果为 L = x ˉ ± δ lim ⁡ ( x ˉ ) L=\bar x±δ_{\lim}(\bar x) L=xˉ±δlim(xˉ)
  • m次不等精度测量的加权合成:令权p1:p2:⋯=n1:n2:⋯,总的 x ˉ = ∑ p i x ˉ i ∑ p i \bar x=\frac{∑p_i\bar x_i}{∑p_i} xˉ=pipixˉi x ˉ = x 0 + ∑ p i ( x ˉ i − x 0 ) ∑ p i , v i = x ˉ i − x ˉ , σ = ∑ p i v i 2 m − 1 , σ x ˉ i = σ n i , σ x ˉ = σ ∑ p i = ∑ p i v i 2 ( m − 1 ) ∑ p i \bar x=x_0+\frac{∑p_i(\bar x_i-x_0)}{∑p_i},v_i=\bar x_i-\bar x,σ=\sqrt{\frac{∑p_iv_i^2}{m-1}},σ_{\bar x_i}=\fracσ{\sqrt{n_i}},σ_{\bar x}=\fracσ{\sqrt{∑p_i}}=\sqrt{\frac{∑p_iv_i^2}{(m-1)∑p_i}} xˉ=x0+pipi(xˉix0)vi=xˉixˉ,σ=m1pivi2 ,σxˉi=ni σ,σxˉ=pi σ=(m1)pipivi2 ,最终的测量结果为 L = x ˉ ± 3 σ x ˉ L=\bar x±3σ_{\bar x} L=xˉ±3σxˉ
  • t检验法:假设有两组数据x~N(L0x)和y~N(L0y)。令 t = ( x ˉ − y ˉ ) n x n y ( n x + n y − 2 ) ( n x + n y ) ( n x σ x 2 + n y σ y 2 ) t=(\bar x-\bar y)\sqrt{\frac{n_xn_y(n_x+n_y-2)}{(n_x+n_y)(n_xσ_x^2+n_yσ_y^2)}} t=(xˉyˉ)(nx+ny)(nxσx2+nyσy2)nxny(nx+ny2) ,当|t|<t(nx+ny-2,α)时无系统误差。

误差的合成与分配

  • 由全微分公式得,基于多元函数 y = f ( x ⃗ ) y=f(\vec x) y=f(x )的间接测量的系统误差为 Δ y = Δ f ( x ⃗ ) = ∑ ∂ f ∂ x i Δ x i Δy=Δf(\vec x)=∑\frac{∂f}{∂x_i}Δx_i Δy=Δf(x )=xifΔxi
  • 若有 sin ⁡ y = f \sin y=f siny=f,因为 Δ sin ⁡ y = cos ⁡ y Δ y = Δ f Δ\sin y=\cos yΔy=Δf Δsiny=cosyΔy=Δf,所以 Δ y = Δ f cos ⁡ y Δy=\frac{Δf}{\cos y} Δy=cosyΔf,其它函数同理。
  • y的公称值为y0,极限误差为 δ lim ⁡ ( y ) = ∑ [ ∂ f ∂ x i δ lim ⁡ ( x i ) ] 2 δ_{\lim}(y)=\sqrt{∑[\frac{∂f}{∂x_i}δ_{\lim}(x_i)]^2} δlim(y)=[xifδlim(xi)]2 ,因此测量结果为 L = y 0 − Δ y ± δ lim ⁡ ( y ) L=y_0-Δy±δ_{\lim}(y) L=y0Δy±δlim(y)
  • δ lim ⁡ ( x i ) δ_{\lim}(x_i) δlim(xi)未知时,令 σ y = ∑ ( ∂ f ∂ x i σ x i ) 2 σ_y=\sqrt{∑(\frac{∂f}{∂x_i}σ_{x_i})^2} σy=(xifσxi)2 ,则 δ lim ⁡ ( y ) = 3 σ y δ_{\lim}(y)=3σ_y δlim(y)=3σy。同理,若有 sin ⁡ y = f \sin y=f siny=f,则 σ y = σ f cos ⁡ y σ_y=\frac{σ_f}{\cos y} σy=cosyσf
  • 选择最佳测量方案:(1)令σy尽量小;(2)令误差传递系数 ∂ f ∂ x i = 0 \frac{∂f}{∂x_i}=0 xif=0或尽量小
  • 等作用分配原则:σy已知时,令 ( ∂ f ∂ x 1 σ x 1 ) 2 = ( ∂ f ∂ x 2 σ x 2 ) 2 = ⋯ = ( ∂ f ∂ x n σ x n ) 2 = σ y 2 n (\frac{∂f}{∂x_1}σ_{x_1})^2=(\frac{∂f}{∂x_2}σ_{x_2})^2=⋯=(\frac{∂f}{∂x_n}σ_{x_n})^2=\frac{σ_y^2}n (x1fσx1)2=(x2fσx2)2==(xnfσxn)2=nσy2,从而求得 σ x i = σ y n / ∂ f ∂ x i σ_{x_i}=\frac{σ_y}{\sqrt n}/\frac{∂f}{∂x_i} σxi=n σy/xif。δlim(y)已知时,同理可得 δ lim ⁡ ( x i ) = δ lim ⁡ ( y ) n / ∂ f ∂ x i δ_{\lim}(x_i)=\frac{δ_{\lim}(y)}{\sqrt n}/\frac{∂f}{∂x_i} δlim(xi)=n δlim(y)/xif

回归分析

  • 拟合之前先画散点图。
  • 求线性回归方程 y ^ = k x + b \hat y=kx+b y^=kx+b的简易公式是 k = ∑ x i y i − n x ˉ y ˉ ∑ x i 2 − n x ˉ 2 , b = y ˉ − k x ˉ k=\frac{∑x_iy_i-n\bar x\bar y}{∑x_i^2-n\bar x^2},b=\bar y-k\bar x k=xi2nxˉ2xiyinxˉyˉ,b=yˉkxˉ。这是用最小二乘法求得的,即求 e = ∑ ( y i − y ^ i ) 2 e=∑(y_i-\hat y_i)^2 e=(yiy^i)2取最小值时的驻点。对于多元线性回归,只能用 X = ( A T A ) − 1 A T B X=(A^TA)^{-1}A^TB X=(ATA)1ATB
  • 曲线拟合过程可以通过换元变成线性回归。用直线法可检验模型的好坏,即将曲线换元成直线,然后描点画直线;用表差法也可检验模型的好坏,如要拟合y=ae-x+b,,可以作列表Δy→lnΔy→ΔlnΔy,若ΔlnΔy近似为常数,则说明该模型可用。
  • 评估线性回归的效果时,根据方差分析,有 U = ∑ ( y ^ i − y ˉ ) 2 , Q = ∑ ( y i − y ^ i ) 2 , σ = Q n − 2 U=∑(\hat y_i-\bar y)^2,Q=∑(y_i-\hat y_i)^2,σ=\sqrt{\frac Q{n-2}} U=(y^iyˉ)2,Q=(yiy^i)2,σ=n2Q
  • 在显著性检验中,有 ν U = 1 , ν Q = n − 2 , F = U ν U / Q ν Q ν_U=1,ν_Q=n-2,F=\frac U{ν_U}/\frac Q{ν_Q} νU=1,νQ=n2,F=νUU/νQQ。此时若 F ≥ F α ( 1 , n − 2 ) F≥F_α(1,n-2) FFα(1,n2),则称回归在α水平上显著,否则称x和y的线性关系不密切。
  • 评估曲线拟合效果时,相关指数 R 2 = 1 − Q ∑ ( y i − y ˉ ) 2 R^2=1-\frac{Q}{∑(y_i-\bar y)^2} R2=1(yiyˉ)2Q越接近1,拟合效果就越好。用换元前的因变量进行计算。

谐波分析

傅里叶级数

  • 在[0,2π)上满足Dirichlet条件的函数的傅里叶级数为 { f ( x ) = A 0 + ∑ ( A n cos ⁡ n x + B n sin ⁡ n x ) A 0 = 1 2 π ∫ 0 2 π f ( x ) d x A n = 1 π ∫ 0 2 π f ( x ) cos ⁡ n x d x B n = 1 π ∫ 0 2 π f ( x ) sin ⁡ n x d x \left\{\begin{matrix}f(x)=A_0+∑(A_n\cos nx+B_n\sin nx)\\A_0=\frac1{2π}\int_0^{2π}f(x)\mathrm dx\\A_n=\frac1π\int_0^{2π}f(x)\cos nx\mathrm dx\\B_n=\frac1π\int_0^{2π}f(x)\sin nx\mathrm dx\end{matrix}\right. f(x)=A0+(Ancosnx+Bnsinnx)A0=2π102πf(x)dxAn=π102πf(x)cosnxdxBn=π102πf(x)sinnxdx
  • 在0~2π内取n等分点处的数据,然后用最小二乘原理(回归方程)可以硬解出傅里叶系数。
    令An=Cnsinφ,Bn=Cncosφ,则Ancos(nx)+Bnsin(nx)=Cnsin(nx+φ)称为第n阶谐波分量, C n = A n 2 + B n 2 C_n=\sqrt{A_n^2+B_n^2} Cn=An2+Bn2 为其振幅, φ = arctan ⁡ A n B n φ=\arctan\frac{A_n}{B_n} φ=arctanBnAn为其初相位。

傅里叶变换

  • 圆频率f与角频率ω的关系是ω=2πf
  • 随机过程的均值为 m x ( t ) = E [ x ( t ) ] m_x(t)=E[x(t)] mx(t)=E[x(t)],即x(t)的一阶原点矩。
  • 随机过程的方差为 D x ( t ) = E ( [ x ( t ) − m x ( t ) ] 2 ) D_x(t)=E([x(t)-m_x(t)]^2) Dx(t)=E([x(t)mx(t)]2),即x(t)的二阶中心矩。标准差为 σ x ( t ) = D x ( t ) σ_x(t)=\sqrt{D_x(t)} σx(t)=Dx(t)
  • 随机过程的均方值为 ψ x 2 ( t ) = E ( [ x 2 ( t ) ] ) = m x 2 ( t ) + σ x 2 ( t ) ψ_x^2(t)=E([x^2(t)])=m_x^2(t)+σ_x^2(t) ψx2(t)=E([x2(t)])=mx2(t)+σx2(t),即x(t)的二阶原点矩。
  • 随机过程的自相关函数为 K x ( τ ) = E ( [ x ( t ) − m x ( t ) ] [ x ( t + τ ) − m x ( t + τ ) ] ) K_x(τ)=E([x(t)-m_x(t)][x(t+τ)-m_x(t+τ)]) Kx(τ)=E([x(t)mx(t)][x(t+τ)mx(t+τ)])
  • Dx=Kx(0)
  • 随机过程的标准自相关函数为 ρ x ( t , t + τ ) = K x ( t , t + τ ) σ x ( t ) σ x ( t + τ ) , ρ x ( τ ) = K x ( τ ) D x ρ_x(t,t+τ)=\frac{K_x(t,t+τ)}{σ_x(t)σ_x(t+τ)},ρ_x(τ)=\frac{K_x(τ)}{D_x} ρx(t,t+τ)=σx(t)σx(t+τ)Kx(t,t+τ),ρx(τ)=DxKx(τ)
  • 信号x(t)与频谱x(f)互为傅里叶变换:
    x ( f ) = ∫ − ∞ + ∞ x ( t ) e − i ω t d t , x ( t ) = ∫ − ∞ + ∞ x ( f ) e − i ω t d f x(f)=\int_{-∞}^{+∞}x(t)e^{-iωt}\mathrm dt,x(t)=\int_{-∞}^{+∞}x(f)e^{-iωt}\mathrm df x(f)=+x(t)etdt,x(t)=+x(f)etdf
    频率成分f的大小为|x(f)|,初相位为Arg[x(f)]。
  • 双边谱密度函数Sx(ω)与Kx(τ)互为傅里叶变换:
    S x ( ω ) = 1 2 π ∫ − ∞ + ∞ K x ( τ ) e − i ω τ d τ = 1 π ∫ 0 + ∞ K x ( τ ) cos ⁡ ( ω τ ) d τ K x ( τ ) = ∫ − ∞ + ∞ S x ( ω ) e i ω τ d ω = 2 ∫ 0 + ∞ S x ( ω ) cos ⁡ ( ω τ ) d ω S_x(ω)=\frac1{2π}\int_{-∞}^{+∞}K_x(τ)e^{-iωτ}\mathrm dτ=\frac1π\int_0^{+∞}K_x(τ)\cos(ωτ)\mathrm dτ\\K_x(τ)=\int_{-∞}^{+∞}S_x(ω)e^{iωτ}\mathrm dω=2\int_0^{+∞}S_x(ω)\cos(ωτ)\mathrm dω Sx(ω)=2π1+Kx(τ)eτdτ=π10+Kx(τ)cos(ωτ)dτKx(τ)=+Sx(ω)eτdω=20+Sx(ω)cos(ωτ)dω
  • Kx(τ)为常函数或正/余弦函数的组合时,Sx(ω)为冲激函数的组合。令τ=0,上式两端变为 K x ( 0 ) = ∫ − ∞ + ∞ S x ( ω ) d ω K_x(0)=\int_{-∞}^{+∞}S_x(ω)\mathrm dω Kx(0)=+Sx(ω)dω,由此可以确定冲激函数的系数。
  • 单边谱密度Gx(f)=2Sx(f),且它的f≥0。
  • 采样定理:信号不失真时,采样频率fs和信号的最高频率分量fm满足fs≥2fm

动态测试数据处理的基本方法

动态测试数据的分类:
动态测试数据的分类

  • 平稳过程的均值和方差为常数。
  • 若每次实验时,上述常数都(不一定)相同,则该平稳过程为(非)各态历经过程。
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值