Opencv中DNN模块的blobFromImage函数、forward函数

200 篇文章 5 订阅 ¥49.90 ¥99.00
本文详细介绍了OpenCV中DNN模块的blobFromImage和forward函数,包括函数参数解析、输出说明以及在目标识别、语义分割和目标分类等应用场景的处理方法,帮助读者理解如何正确处理神经网络的输入和输出。
摘要由CSDN通过智能技术生成

        官网以及网上对blobFromImage函数、forward函数讲解的很详细,但是对于输出的结果几乎没有介绍,所以很多时候再对于输出之后怎么处理让人比较困惑。

1、blobFromImage函数原型

blobFromImage(InputArray image, 
			  double scalefactor=1.0, 
		      const Size& size = Size(),
			  const Scalar& mean = Scalar(), 
			  bool swapRB = false, 
			  bool crop = false,
			  int ddepth = CV_32F)

        image:这个就是我们将要输入神经网络进行处理或者分类的图片。

        mean:需要将图片整体减去的平均值,如果我们需要对RGB图片的三个通道分别减去不同的值,那么可以使用3组平均值,如果只使用一组,那么就默认对三个通道减去一样的值。减去平均值(mean):为了消除同一场景下不同光照的图片,对我们最终的分类或者神经网络的影响,我们常常对图片的R、G、B通道的像素求一个平均值,然后将每个像素值减去我们的平均值,这样就可以得到像素之间的相对值,就可以排除光照的影响。

        scalefactor:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值