Python视觉深度学习系列教程 第三卷 第7章 在ImageNet上训练ResNet

本文深入探讨ResNet架构,尤其是ResNet50,包括残差模块的瓶颈+预激活版本。通过Python和mxnet实现并训练ResNet50,详细记录了不同学习率和模块设计对性能的影响,最终在ImageNet上实现73.01% rank-1准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第三卷 第七章 在ImageNet上训练ResNet

        在本章中,将从头开始实施和训练ResNet架构。ResNet在深度学习的历史上极为重要,因为它引入了残差模块和恒等映射的概念。这些概念使我们能够训练在ImageNet上具有>200层和在CIFAR-10上具有>1,000层的网络——以前认为在成功训练网络时不可能达到的深度。

        我们已经在第二卷的第12章中详细回顾了ResNet架构;但本章仍将简要回顾一下残差模块的当前变化。 并将使用 Python 和 mxnet 库实现 ResNet。 最后,我们将执行许多实验,从头开始在ImageNet上训练 ResNet。

        1、理解ResNet

        ResNet 的基石是残差模块。在他们 2015 年的论文中,残差模块由两个分支组成。第一个是简单的快捷方式,它将输入连接到第二个分支的添加,一系列卷积和激活(图,左)。

        然而,在同一篇论文中,发现瓶颈残差模块表现更好,尤其是在训练更深的网络时。瓶颈是对残差模块的简单扩展。我们仍然有我们的快捷模块,只是现在我们微架构的第二个分支发生了变化。我们现在应用了三个卷积,而不是只应用两个卷积(图,中间)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值