一、拆分学习概述
SplitNN 是一种分布式和私有的深度学习技术,可以在多个数据源上训练深度神经网络,而无需直接共享原始标记数据。
通常需要构建深度学习应用程序,这需要大量数据,但这些数据可能来自多个实体(人类、组织)。而且这些数据可能是敏感的,这意味着我们需要数据的实体(人类或组织)可能由于隐私原因不想共享这些数据。
医疗数据、财务数据等个人用户数据都是组织和个人可能不愿意共享的敏感数据。
因此需要保护隐私的深度学习,我们使用敏感数据来构建深度学习应用程序,以从这些数据中获得洞察力,例如预测罕见疾病或金融犯罪,但不掌握原始数据。
数据共享是机器学习模型的主要挑战之一。联合学习、差分隐私和拆分学习等技术的出现在很大程度上解决了数据孤岛、隐私和监管问题。
拆分神经网络 (SplitNN) 不会与合作机构共享原始数据或模型细节。这是一种由 MIT 媒体实验室开发的新技术,它允许在不共享任何原始数据的情况下训练机器学习模型。该技术解决了数据孤岛、数据共享等挑战。
二、拆分学习的工作原理
1、基本原理描述
SplitNN是一种分布式和私有的深度学习技术,可以在多个数据源上训练深度神经网络,而无需直接共享原始标记数据。SplitNN 解决了在多个数据实体上训练模型的问题。