机器学习笔记 - 拆分学习和拆分神经网络(SplitNN)

SplitNN是一种在不共享原始数据的情况下,利用分布式和私有深度学习技术训练神经网络的方法。它解决了数据隐私和孤岛问题,尤其适用于医疗、财务等敏感数据场景。拆分学习将模型拆分为多个部分,每个部分在不同客户端上独立训练,仅交换切割层权重,确保数据安全。此外,文章还探讨了水平和垂直数据分区的原理,并对比了拆分学习与联合学习的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、拆分学习概述

        SplitNN 是一种分布式和私有的深度学习技术,可以在多个数据源上训练深度神经网络,而无需直接共享原始标记数据。

        通常需要构建深度学习应用程序,这需要大量数据,但这些数据可能来自多个实体(人类、组织)。而且这些数据可能是敏感的,这意味着我们需要数据的实体(人类或组织)可能由于隐私原因不想共享这些数据。

        医疗数据、财务数据等个人用户数据都是组织和个人可能不愿意共享的敏感数据。

        因此需要保护隐私的深度学习,我们使用敏感数据来构建深度学习应用程序,以从这些数据中获得洞察力,例如预测罕见疾病或金融犯罪,但不掌握原始数据。

        数据共享是机器学习模型的主要挑战之一。联合学习、差分隐私和拆分学习等技术的出现在很大程度上解决了数据孤岛、隐私和监管问题。

        拆分神经网络 (SplitNN) 不会与合作机构共享原始数据或模型细节。这是一种由 MIT 媒体实验室开发的新技术,它允许在不共享任何原始数据的情况下训练机器学习模型。该技术解决了数据孤岛、数据共享等挑战。

二、拆分学习的工作原理

1、基本原理描述

        SplitNN是一种分布式和私有的深度学习技术,可以在多个数据源上训练深度神经网络,而无需直接共享原始标记数据。SplitNN 解决了​​在多个数据实体上训练模型的问题。 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值