白化whitening

https://blog.csdn.net/hjimce/article/details/50864602

2018-11-30 09:46:05

阅读数 35

评论数 0

Understanding Feature Engineering (Part 4) — A hands-on intuitive approach to Deep Learning Methods

Introduction Working with unstructured text data is hard especially when you are trying to build an intelligent system which interprets and understa...

2018-11-30 09:26:30

阅读数 95

评论数 0

Understanding Feature Engineering (Part 3) — Traditional Methods for Text Data

Introduction We have covered various feature engineering strategies for dealing with structured data in the first two parts of this series. Check ou...

2018-11-30 09:23:55

阅读数 35

评论数 0

Understanding Feature Engineering (Part 2) — Categorical Data

Introduction We covered various feature engineering strategies for dealing with structured continuous numeric data in the previous article in this s...

2018-11-30 09:22:38

阅读数 70

评论数 0

Understanding Feature Engineering (Part 1) — Continuous Numeric Data

Introduction “Money makes the world go round” is something which you cannot ignore whether to choose to agree or disagree with it. A more apt saying...

2018-11-30 09:07:35

阅读数 28

评论数 0

Learning Scikit-learn Machine Learning in Python

Chapter 4: Advanced Features - Feature Engineering and Selection %pylab inline import pandas as pd import numpy as np import matplotlib.pyplot as p...

2017-08-01 09:35:15

阅读数 448

评论数 0

多维标度法(MDS)的Python实现

多维标度法(multidimensional scaling,MDS)是一种在低维空间展示“距离”数据结构的多元数据分析技术,是一种将多维空间的研究对象( 样本 或 变量 ) 简化到低维空间进行定位、分析和归类, 同时又保留对象间原始关系的数据分析方法。 多维标度法与主成分分析(Princi...

2017-07-04 16:55:08

阅读数 1715

评论数 0

关于特征提取和PCA VS LDA(linear Discriminant Analysis)

关于特征提取和PCA VS LDA(linear Discriminant Analysis)(一)   (2015-05-24 12:57:25) 转载▼ 标签:  机器学习   特征选择   lineardiscriministic ...

2017-07-04 16:53:35

阅读数 242

评论数 0

四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f...

2017-06-13 10:08:36

阅读数 481

评论数 0

特征工程(Feature Enginnering)学习记要

http://cowlet.org/2013/10/14/understanding-data-science-designing-useful-features-with-r.html  最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feat...

2017-06-12 13:01:24

阅读数 365

评论数 0

连续特征离散化的方法

在FFM算法编码之前突然考虑到标准化的问题,例如大多数的属性都是0-1,出现的部分连续属性比如价格可能会很大,这些的情况会不会影响FFM的结果。 首先在网上搜了一下,连续特征离散化处理起到的效果是什么,这里引用一下知乎的回答 作者:严林 链接:https://www.zhihu.com/qu...

2017-06-12 11:39:11

阅读数 835

评论数 0

特征离散化系列(一)方法综述

一.互联网广告特征工程 博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训练方法本身,对效果的影响却不是决定性的,因为训练的是...

2017-06-12 11:22:51

阅读数 1378

评论数 0

特征工程与模型调优

[-] 一 数据选择清洗采样 数据选择数据格式化数据清洗正负样本不均衡 二 特征处理 特征处理分类 1数值型2类别型3时间型4文本型5统计型6组合型 特征选择 1做特征选择原因2特征选择与降维区别3特征选择方法 特征处理流程图 四模型调优 过拟合欠拟合线性模型权重分析bad-case分...

2017-06-11 20:48:33

阅读数 2591

评论数 0

Discover Feature Engineering, How to Engineer Features and How to Get Good at It

Discover Feature Engineering, How to Engineer Features and How to Get Good at It by Jason Brownlee on September 26, 2014 in Machine Learning Proc...

2017-06-08 10:23:20

阅读数 418

评论数 0

机器学习中的特征选择问题

机器学习中,特征选择是特征工程中的重要问题(另一个重要的问题是特征提取),坊间常说:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程尤其是特征选择在机器学习中占有相当重要的地位。 强烈推荐一篇博文,说如何进行特征选择的: http://machinelear...

2017-06-08 10:19:46

阅读数 760

评论数 0

特征工程 vs. 特征提取:比赛开始!

“特征工程”这个华丽的术语,它以尽可能容易地使模型达到良好性能的方式,来确保你的预测因子被编码到模型中。例如,如果你有一个日期字段作为一个预测因子,并且它在周末与平日的响应上有着很大的不同,那么以这种方式编码日期,它更容易取得好的效果。 但是,这取决于许多方面。 首先,它是依赖模型的。例如,如...

2017-06-08 10:13:10

阅读数 204

评论数 0

特征工程以及特征选择的工程方法

关于特征工程(Feature Engineering),已经是很古老很常见的话题了,坊间常说:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。纵观Kaggle、KDD等国内外...

2017-06-08 10:04:10

阅读数 1833

评论数 0

特征工程

[-] 背景综述特征使用方案特征获取方案特征与标注数据清洗 样本采样与样本过滤 特征分类 特征处理与分析 特征归一化离散化缺省值处理特征降维特征选择 特征选择-产生过程和生成特征子集方法特征选择有效性分析 特征监控 参考 转 机器学习中的数据清洗与特征处理综述 ...

2017-06-08 10:02:31

阅读数 212

评论数 0

特征选择与特征学习

特征选择与特征学习 在机器学习的具体实践任务中,选择一组具有代表性的特征用于构建模型是非常重要的问题。特征选择通常选择与类别相关性强、且特征彼此间相关性弱的特征子集,具体特征选择算法通过定义合适的子集评价函数来体现。 在现实世界中,数据通常是复杂冗余,富有变化的,有必要从原始数据发现有用的特性。...

2017-06-08 10:00:58

阅读数 1755

评论数 0

使用sklearn优雅地进行数据挖掘

目录 1 使用sklearn进行数据挖掘   1.1 数据挖掘的步骤   1.2 数据初貌   1.3 关键技术 2 并行处理   2.1 整体并行处理   2.2 部分并行处理 3 流水线处理 4 自动化调参 5 持久化 6 回顾 7 总结 8 参考资料 1 使用sklearn进行数据挖掘 ...

2017-06-08 09:57:46

阅读数 206

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭