Softmax分类回归器



softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量  θj  中减去了向量  ψ  ,这时,每一个  θj 都变成了  θjψ(j=1,,k)  。此时假设函数变成了以下的式子: 

p(y(i)=j|x(i);θ)=e(θjψ)Tx(i)kl=1e(θlψ)Tx(i)=eθTjx(i)eψTx(i)kl=1eθTlx(i)eψTx(i)=eθTjx(i)kl=1eθTlx(i).

换句话说,从  θj  中减去  ψ  完全不影响假设函数的预测结果! 这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说,softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数  hθ  。

进一步而言,如果参数  (θ1,θ2,,θk)  是代价函数  J(θ)  的极小值点,那么  (θ1ψ,θ2ψ,,θkψ)  同样也是它的极小值点,其中  ψ  可以为任意向量。因此使  J(θ)  最小化的解不是唯一的。(有趣的是,由于  J(θ)  仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)

注意,当  ψ=θ1  时,我们总是可以将  θ1  替换为  θ1ψ=0⃗   (即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量  θ1 (或者其他  θj  中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的  k×(n+1)  个参数  (θ1,θ2,,θk)  (其中  θjRn+1  ),我们可以令  θ1=0⃗  ,只优化剩余的  (k1)×(n+1)  个参数,这样算法依然能够正常工作。

在实际应用中,为了使算法实现更简单清楚,往往保留所有参数  (θ1,θ2,,θn) ,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

权重衰减

我们通过添加一个权重衰减项  λ2ki=1nj=0θ2ij  来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为: 

J(θ)=1mi=1mj=1k1{y(i)=j}logeθTjx(i)kl=1eθTlx(i)+λ2i=1kj=0nθ2ij

有了这个权重衰减项以后 (  λ>0  ),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为  J(θ)  是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

为了使用优化算法,我们需要求得这个新函数  J(θ) 的导数,如下: 

θjJ(θ)=1mi=1m[x(i)(1{y(i)=j}p(y(i)=j|x(i);θ))]+λθj

通过最小化  J(θ) ,我们就能实现一个可用的 softmax 回归模型。

softmax回归与logistic 回归的关系

当类别数  k=2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当  k=2  时,softmax 回归的假设函数为: 

hθ(x)=1eθT1x+eθT2x(i)[eθT1xeθT2x]

利用softmax回归参数冗余的特点,我们令  ψ=θ1 ,并且从两个参数向量中都减去向量  θ1 ,得到: 

h(x)=1e0⃗ Tx+e(θ2θ1)Tx(i)e0⃗ Txe(θ2θ1)Tx=11+e(θ2θ1)Tx(i)e(θ2θ1)Tx1+e(θ2θ1)Tx(i)=11+e(θ2θ1)Tx(i)111+e(θ2θ1)Tx(i)

因此,用  θ  来表示  θ2θ1  ,我们就会发现 softmax 回归器预测其中一个类别的概率为  11+e(θ)Tx(i)  ,另一个类别概率的为  111+e(θ)Tx(i)  ,这与 logistic回归是一致的。

softmax 回归 vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢? 
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。) 
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。 
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢? 
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

中文译者: 
曾俊瑀(knighterzjy@gmail.com), 王方(fangkey@gmail.com),王文中(wangwenzhong@ymail.com)

后续会进行代码实现,敬请关注!

softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量  θj  中减去了向量  ψ  ,这时,每一个  θj 都变成了  θjψ(j=1,,k)  。此时假设函数变成了以下的式子: 

p(y(i)=j|x(i);θ)=e(θjψ)Tx(i)kl=1e(θlψ)Tx(i)=eθTjx(i)eψTx(i)kl=1eθTlx(i)eψTx(i)=eθTjx(i)kl=1eθTlx(i).

换句话说,从  θj  中减去  ψ  完全不影响假设函数的预测结果! 这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说,softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数  hθ  。

进一步而言,如果参数  (θ1,θ2,,θk)  是代价函数  J(θ)  的极小值点,那么  (θ1ψ,θ2ψ,,θkψ)  同样也是它的极小值点,其中  ψ  可以为任意向量。因此使  J(θ)  最小化的解不是唯一的。(有趣的是,由于  J(θ)  仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)

注意,当  ψ=θ1  时,我们总是可以将  θ1  替换为  θ1ψ=0⃗   (即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量  θ1 (或者其他  θj  中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的  k×(n+1)  个参数  (θ1,θ2,,θk)  (其中  θjRn+1  ),我们可以令  θ1=0⃗  ,只优化剩余的  (k1)×(n+1)  个参数,这样算法依然能够正常工作。

在实际应用中,为了使算法实现更简单清楚,往往保留所有参数  (θ1,θ2,,θn) ,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

权重衰减

我们通过添加一个权重衰减项  λ2ki=1nj=0θ2ij  来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为: 

J(θ)=1mi=1mj=1k1{y(i)=j}logeθTjx(i)kl=1eθTlx(i)+λ2i=1kj=0nθ2ij

有了这个权重衰减项以后 (  λ>0  ),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为  J(θ)  是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

为了使用优化算法,我们需要求得这个新函数  J(θ) 的导数,如下: 

θjJ(θ)=1mi=1m[x(i)(1{y(i)=j}p(y(i)=j|x(i);θ))]+λθj

通过最小化  J(θ) ,我们就能实现一个可用的 softmax 回归模型。

softmax回归与logistic 回归的关系

当类别数  k=2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当  k=2  时,softmax 回归的假设函数为: 

hθ(x)=1eθT1x+eθT2x(i)[eθT1xeθT2x]

利用softmax回归参数冗余的特点,我们令  ψ=θ1 ,并且从两个参数向量中都减去向量  θ1 ,得到: 

h(x)=1e0⃗ Tx+e(θ2θ1)Tx(i)e0⃗ Txe(θ2θ1)Tx=11+e(θ2θ1)Tx(i)e(θ2θ1)Tx1+e(θ2θ1)Tx(i)=11+e(θ2θ1)Tx(i)111+e(θ2θ1)Tx(i)

因此,用  θ  来表示  θ2θ1  ,我们就会发现 softmax 回归器预测其中一个类别的概率为  11+e(θ)Tx(i)  ,另一个类别概率的为  111+e(θ)Tx(i)  ,这与 logistic回归是一致的。

softmax 回归 vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢? 
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。) 
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。 
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢? 
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

中文译者: 
曾俊瑀(knighterzjy@gmail.com), 王方(fangkey@gmail.com),王文中(wangwenzhong@ymail.com)

后续会进行代码实现,敬请关注!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值